ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.09125
  4. Cited By
Operationalizing Machine Learning: An Interview Study

Operationalizing Machine Learning: An Interview Study

16 September 2022
Shreya Shankar
Rolando Garcia
J. M. Hellerstein
Aditya G. Parameswaran
ArXivPDFHTML

Papers citing "Operationalizing Machine Learning: An Interview Study"

12 / 12 papers shown
Title
Data Makes Better Data Scientists
Data Makes Better Data Scientists
Jinjin Zhao
A. Gal
Sanjay Krishnan
24
2
0
27 May 2024
Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes
Language Models Enable Simple Systems for Generating Structured Views of Heterogeneous Data Lakes
Simran Arora
Brandon Yang
Sabri Eyuboglu
A. Narayan
Andrew Hojel
Immanuel Trummer
Christopher Ré
SyDa
47
69
0
19 Apr 2023
Causal Inference out of Control: Estimating the Steerability of
  Consumption
Causal Inference out of Control: Estimating the Steerability of Consumption
Gary Cheng
Moritz Hardt
Celestine Mendler-Dünner
CML
31
1
0
10 Feb 2023
An Efficient Framework for Monitoring Subgroup Performance of Machine
  Learning Systems
An Efficient Framework for Monitoring Subgroup Performance of Machine Learning Systems
Huong Ha
19
0
0
16 Dec 2022
Rethinking Streaming Machine Learning Evaluation
Rethinking Streaming Machine Learning Evaluation
Shreya Shankar
Bernease Herman
Aditya G. Parameswaran
LRM
46
6
0
23 May 2022
The CLEAR Benchmark: Continual LEArning on Real-World Imagery
The CLEAR Benchmark: Continual LEArning on Real-World Imagery
Zhiqiu Lin
Jia Shi
Deepak Pathak
Deva Ramanan
CLL
VLM
137
91
0
17 Jan 2022
A Fine-Grained Analysis on Distribution Shift
A Fine-Grained Analysis on Distribution Shift
Olivia Wiles
Sven Gowal
Florian Stimberg
Sylvestre-Alvise Rebuffi
Ira Ktena
Krishnamurthy Dvijotham
A. Cemgil
OOD
225
201
0
21 Oct 2021
How to avoid machine learning pitfalls: a guide for academic researchers
How to avoid machine learning pitfalls: a guide for academic researchers
M. Lones
VLM
FaML
OnRL
59
77
0
05 Aug 2021
Whither AutoML? Understanding the Role of Automation in Machine Learning
  Workflows
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
50
91
0
13 Jan 2021
Demystifying a Dark Art: Understanding Real-World Machine Learning Model
  Development
Demystifying a Dark Art: Understanding Real-World Machine Learning Model Development
Angela Lee
Doris Xin
D. Lee
Aditya G. Parameswaran
HAI
49
12
0
04 May 2020
Human-AI Collaboration in Data Science: Exploring Data Scientists'
  Perceptions of Automated AI
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
171
309
0
05 Sep 2019
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
1