Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.08244
Cited By
MA2QL: A Minimalist Approach to Fully Decentralized Multi-Agent Reinforcement Learning
17 September 2022
Kefan Su
Siyuan Zhou
Jiechuan Jiang
Chuang Gan
Xiangjun Wang
Zongqing Lu
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MA2QL: A Minimalist Approach to Fully Decentralized Multi-Agent Reinforcement Learning"
8 / 8 papers shown
Title
An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning
Christopher Amato
OffRL
31
9
0
04 Sep 2024
Fully Decentralized Cooperative Multi-Agent Reinforcement Learning: A Survey
Jiechuan Jiang
Kefan Su
Zongqing Lu
38
3
0
10 Jan 2024
Is Centralized Training with Decentralized Execution Framework Centralized Enough for MARL?
Yihe Zhou
Shunyu Liu
Yunpeng Qing
Kaixuan Chen
Tongya Zheng
Yanhao Huang
Jie Song
31
17
0
27 May 2023
Best Possible Q-Learning
Jiechuan Jiang
Zongqing Lu
OffRL
20
5
0
02 Feb 2023
More Centralized Training, Still Decentralized Execution: Multi-Agent Conditional Policy Factorization
Jiangxing Wang
Deheng Ye
Zongqing Lu
OffRL
39
18
0
26 Sep 2022
Divergence-Regularized Multi-Agent Actor-Critic
Kefan Su
Zongqing Lu
46
25
0
01 Oct 2021
Multiagent Value Iteration Algorithms in Dynamic Programming and Reinforcement Learning
Dimitri Bertsekas
38
38
0
04 May 2020
Bi-level Actor-Critic for Multi-agent Coordination
Haifeng Zhang
Weizhe Chen
Zeren Huang
Minne Li
Yaodong Yang
Weinan Zhang
Jun Wang
98
91
0
08 Sep 2019
1