ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.08073
  4. Cited By
Case Studies for Computing Density of Reachable States for Safe
  Autonomous Motion Planning

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

16 September 2022
Yue Meng
Zeng Qiu
Md Tawhid Bin Waez
Chuchu Fan
ArXivPDFHTML

Papers citing "Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning"

6 / 6 papers shown
Title
The Third International Verification of Neural Networks Competition
  (VNN-COMP 2022): Summary and Results
The Third International Verification of Neural Networks Competition (VNN-COMP 2022): Summary and Results
Mark Niklas Muller
Christopher Brix
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
29
43
0
20 Dec 2022
Density Planner: Minimizing Collision Risk in Motion Planning with
  Dynamic Obstacles using Density-based Reachability
Density Planner: Minimizing Collision Risk in Motion Planning with Dynamic Obstacles using Density-based Reachability
Laura Lutzow
Yue Meng
Andres S. Chavez Armijos
Chuchu Fan
29
4
0
05 Oct 2022
Learning Density Distribution of Reachable States for Autonomous Systems
Learning Density Distribution of Reachable States for Autonomous Systems
Yue Meng
Dawei Sun
Zeng Qiu
Md Tawhid Bin Waez
Chuchu Fan
77
19
0
14 Sep 2021
Reachability Analysis for Feed-Forward Neural Networks using Face
  Lattices
Reachability Analysis for Feed-Forward Neural Networks using Face Lattices
Xiaodong Yang
Hoang-Dung Tran
Weiming Xiang
Taylor Johnson
CVBM
70
19
0
02 Mar 2020
Output Reachable Set Estimation and Verification for Multi-Layer Neural
  Networks
Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks
Weiming Xiang
Hoang-Dung Tran
Taylor T. Johnson
81
292
0
09 Aug 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
1