Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.07740
Cited By
Computing Abductive Explanations for Boosted Trees
16 September 2022
Gilles Audemard
Jean-Marie Lagniez
Pierre Marquis
N. Szczepanski
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Computing Abductive Explanations for Boosted Trees"
17 / 17 papers shown
Title
Comparing Neural Network Encodings for Logic-based Explainability
Levi Cordeiro Carvalho
Saulo A. F. Oliveira
Thiago Alves Rocha
AAML
138
0
0
26 May 2025
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
98
683
0
05 Oct 2021
Optimal Counterfactual Explanations in Tree Ensembles
Axel Parmentier
Thibaut Vidal
41
54
0
11 Jun 2021
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
40
58
0
13 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
195
671
0
20 Mar 2021
On Relating 'Why?' and 'Why Not?' Explanations
Alexey Ignatiev
Nina Narodytska
Nicholas M. Asher
Sasha Rubin
XAI
FAtt
LRM
48
26
0
21 Dec 2020
On Explaining Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
62
88
0
21 Oct 2020
On The Reasons Behind Decisions
Adnan Darwiche
Auguste Hirth
FaML
49
147
0
21 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
116
6,251
0
22 Oct 2019
Regional Tree Regularization for Interpretability in Black Box Models
Mike Wu
S. Parbhoo
M. C. Hughes
R. Kindle
Leo Anthony Celi
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
48
37
0
13 Aug 2019
A Symbolic Approach to Explaining Bayesian Network Classifiers
Andy Shih
Arthur Choi
Adnan Darwiche
FAtt
64
243
0
09 May 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,954
0
06 Feb 2018
How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation
Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
S. Gershman
Finale Doshi-Velez
FAtt
XAI
97
242
0
02 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
211
1,837
0
30 Nov 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
117
283
0
16 Nov 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
239
4,259
0
22 Jun 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,954
0
16 Feb 2016
1