Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.07369
Cited By
Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization
15 September 2022
Omar Montasser
Steve Hanneke
Nathan Srebro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization"
11 / 11 papers shown
Title
Sample Compression Scheme Reductions
Idan Attias
Steve Hanneke
Arvind Ramaswami
MQ
34
1
0
16 Oct 2024
A Model for Combinatorial Dictionary Learning and Inference
Avrim Blum
Kavya Ravichandran
CoGe
24
0
0
26 Jul 2024
On the Computability of Robust PAC Learning
Pascale Gourdeau
Tosca Lechner
Ruth Urner
27
2
0
14 Jun 2024
Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization
Idan Attias
Gintare Karolina Dziugaite
Mahdi Haghifam
Roi Livni
Daniel M. Roy
30
6
0
14 Feb 2024
Optimal Learners for Realizable Regression: PAC Learning and Online Learning
Idan Attias
Steve Hanneke
Alkis Kalavasis
Amin Karbasi
Grigoris Velegkas
30
21
0
07 Jul 2023
Adversarial Resilience in Sequential Prediction via Abstention
Surbhi Goel
Steve Hanneke
Shay Moran
Abhishek Shetty
41
4
0
22 Jun 2023
Impossibility of Characterizing Distribution Learning -- a simple solution to a long-standing problem
Tosca Lechner
Shai Ben-David
18
5
0
18 Apr 2023
Reliable learning in challenging environments
Maria-Florina Balcan
Steve Hanneke
Rattana Pukdee
Dravyansh Sharma
OOD
30
4
0
06 Apr 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
32
8
0
17 Mar 2023
The One-Inclusion Graph Algorithm is not Always Optimal
Ishaq Aden-Ali
Yeshwanth Cherapanamjeri
Abhishek Shetty
Nikita Zhivotovskiy
21
7
0
19 Dec 2022
Agnostic Sample Compression Schemes for Regression
Idan Attias
Steve Hanneke
A. Kontorovich
Menachem Sadigurschi
24
4
0
03 Oct 2018
1