ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.06953
  4. Cited By
On the interplay of adversarial robustness and architecture components:
  patches, convolution and attention

On the interplay of adversarial robustness and architecture components: patches, convolution and attention

14 September 2022
Francesco Croce
Matthias Hein
ArXiv (abs)PDFHTML

Papers citing "On the interplay of adversarial robustness and architecture components: patches, convolution and attention"

45 / 45 papers shown
Title
Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions
Giulia Marchiori Pietrosanti
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
302
0
0
02 Apr 2025
Give Me Your Attention: Dot-Product Attention Considered Harmful for
  Adversarial Patch Robustness
Give Me Your Attention: Dot-Product Attention Considered Harmful for Adversarial Patch Robustness
Giulio Lovisotto
Nicole Finnie
Mauricio Muñoz
Chaithanya Kumar Mummadi
J. H. Metzen
AAMLViT
46
33
0
25 Mar 2022
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
Y. Fu
Shunyao Zhang
Shan-Hung Wu
Cheng Wan
Yingyan Lin
AAML
86
67
0
16 Mar 2022
How Do Vision Transformers Work?
How Do Vision Transformers Work?
Namuk Park
Songkuk Kim
ViT
90
484
0
14 Feb 2022
Patches Are All You Need?
Patches Are All You Need?
Asher Trockman
J. Zico Kolter
ViT
260
410
0
24 Jan 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
186
5,213
0
10 Jan 2022
Are Vision Transformers Robust to Patch Perturbations?
Are Vision Transformers Robust to Patch Perturbations?
Jindong Gu
Volker Tresp
Yao Qin
AAMLViT
93
64
0
20 Nov 2021
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViTAAML
251
266
0
10 Nov 2021
Data Augmentation Can Improve Robustness
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
60
291
0
09 Nov 2021
XCiT: Cross-Covariance Image Transformers
XCiT: Cross-Covariance Image Transformers
Alaaeldin El-Nouby
Hugo Touvron
Mathilde Caron
Piotr Bojanowski
Matthijs Douze
...
Ivan Laptev
Natalia Neverova
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
ViT
148
513
0
17 Jun 2021
Exploring the Limits of Out-of-Distribution Detection
Exploring the Limits of Out-of-Distribution Detection
Stanislav Fort
Jie Jessie Ren
Balaji Lakshminarayanan
77
337
0
06 Jun 2021
Vision Transformers are Robust Learners
Vision Transformers are Robust Learners
Sayak Paul
Pin-Yu Chen
ViT
67
312
0
17 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
724
6,127
0
29 Apr 2021
Going deeper with Image Transformers
Going deeper with Image Transformers
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jégou
ViT
160
1,021
0
31 Mar 2021
On the Adversarial Robustness of Vision Transformers
On the Adversarial Robustness of Vision Transformers
Rulin Shao
Zhouxing Shi
Jinfeng Yi
Pin-Yu Chen
Cho-Jui Hsieh
ViT
76
145
0
29 Mar 2021
Understanding Robustness of Transformers for Image Classification
Understanding Robustness of Transformers for Image Classification
Srinadh Bhojanapalli
Ayan Chakrabarti
Daniel Glasner
Daliang Li
Thomas Unterthiner
Andreas Veit
ViT
93
386
0
26 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
465
21,566
0
25 Mar 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
389
6,802
0
23 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
673
41,430
0
22 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
330
703
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
55
331
0
07 Oct 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
91
425
0
16 Jul 2020
Smooth Adversarial Training
Smooth Adversarial Training
Cihang Xie
Mingxing Tan
Boqing Gong
Alan Yuille
Quoc V. Le
OOD
80
154
0
25 Jun 2020
Sparse-RS: a versatile framework for query-efficient sparse black-box
  adversarial attacks
Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks
Francesco Croce
Maksym Andriushchenko
Naman D. Singh
Nicolas Flammarion
Matthias Hein
86
101
0
23 Jun 2020
PatchAttack: A Black-box Texture-based Attack with Reinforcement
  Learning
PatchAttack: A Black-box Texture-based Attack with Reinforcement Learning
Chenglin Yang
Adam Kortylewski
Cihang Xie
Yinzhi Cao
Alan Yuille
AAML
75
109
0
12 Apr 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
227
1,858
0
03 Mar 2020
Fast is better than free: Revisiting adversarial training
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAMLOOD
140
1,181
0
12 Jan 2020
Sparse and Imperceivable Adversarial Attacks
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
97
199
0
11 Sep 2019
Unlabeled Data Improves Adversarial Robustness
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
130
754
0
31 May 2019
Transfer of Adversarial Robustness Between Perturbation Types
Transfer of Adversarial Robustness Between Perturbation Types
Daniel Kang
Yi Sun
Tom B. Brown
Dan Hendrycks
Jacob Steinhardt
AAML
58
49
0
03 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAMLSILM
82
380
0
30 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,452
0
28 Mar 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
149
2,559
0
24 Jan 2019
Adversarial Framing for Image and Video Classification
Adversarial Framing for Image and Video Classification
Konrad Zolna
Michal Zajac
Negar Rostamzadeh
Pedro H. O. Pinheiro
AAML
75
61
0
11 Dec 2018
Robustness May Be at Odds with Accuracy
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
108
1,782
0
30 May 2018
LaVAN: Localized and Visible Adversarial Noise
LaVAN: Localized and Visible Adversarial Noise
D. Karmon
Daniel Zoran
Yoav Goldberg
AAML
77
244
0
08 Jan 2018
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
91
1,097
0
27 Dec 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
163
2,160
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
317
12,131
0
19 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
786
132,363
0
12 Jun 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
282
8,583
0
16 Aug 2016
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
174
5,042
0
27 Jun 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
353
8,000
0
23 May 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,196
0
16 Mar 2016
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
284
14,963
1
21 Dec 2013
1