Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.06931
Cited By
Robust Transferable Feature Extractors: Learning to Defend Pre-Trained Networks Against White Box Adversaries
14 September 2022
Alexander Cann
Ian Colbert
I. Amer
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Transferable Feature Extractors: Learning to Defend Pre-Trained Networks Against White Box Adversaries"
18 / 18 papers shown
Title
Defense against Adversarial Attacks on Hybrid Speech Recognition using Joint Adversarial Fine-tuning with Denoiser
Sonal Joshi
Saurabh Kataria
Yiwen Shao
Piotr Żelasko
Jesus Villalba
Sanjeev Khudanpur
Najim Dehak
AAML
35
4
0
08 Apr 2022
Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training
Dawei Zhou
N. Wang
Xinbo Gao
Bo Han
Jun Yu
Xiaoyu Wang
Tongliang Liu
AAML
56
4
0
10 Jun 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
316
702
0
19 Oct 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
62
424
0
16 Jul 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
449
42,393
0
03 Dec 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
82
242
0
14 Jun 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,837
0
06 May 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
81
901
0
18 Feb 2019
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
112
391
0
05 Aug 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
99
1,778
0
30 May 2018
On the Robustness of the CVPR 2018 White-Box Adversarial Example Defenses
Anish Athalye
Nicholas Carlini
AAML
50
170
0
10 Apr 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
216
3,185
0
01 Feb 2018
Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser
Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
83
886
0
08 Dec 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
109
1,404
0
31 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
301
12,063
0
19 Jun 2017
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
F. Iandola
Song Han
Matthew W. Moskewicz
Khalid Ashraf
W. Dally
Kurt Keutzer
142
7,477
0
24 Feb 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,099
0
18 May 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,330
0
04 Sep 2014
1