ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.06910
  4. Cited By
Modelling of physical systems with a Hopf bifurcation using mechanistic
  models and machine learning

Modelling of physical systems with a Hopf bifurcation using mechanistic models and machine learning

7 September 2022
K. H. Lee
David A.W. Barton
L. Renson
ArXivPDFHTML

Papers citing "Modelling of physical systems with a Hopf bifurcation using mechanistic models and machine learning"

11 / 11 papers shown
Title
Using scientific machine learning for experimental bifurcation analysis
  of dynamic systems
Using scientific machine learning for experimental bifurcation analysis of dynamic systems
S. Beregi
David A.W. Barton
D. Rezgui
S. Neild
AI4CE
66
20
0
22 Oct 2021
DPM: A Novel Training Method for Physics-Informed Neural Networks in
  Extrapolation
DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation
Jungeun Kim
Kookjin Lee
Dongeun Lee
Sheo Yon Jin
Noseong Park
PINN
AI4CE
50
81
0
04 Dec 2020
Understanding and mitigating gradient pathologies in physics-informed
  neural networks
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
89
294
0
13 Jan 2020
Universal Differential Equations for Scientific Machine Learning
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
84
591
0
13 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,407
0
03 Dec 2019
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
GP
BDL
126
342
0
06 Jul 2018
ResNet with one-neuron hidden layers is a Universal Approximator
ResNet with one-neuron hidden layers is a Universal Approximator
Hongzhou Lin
Stefanie Jegelka
105
228
0
28 Jun 2018
Learning Sparse Neural Networks through $L_0$ Regularization
Learning Sparse Neural Networks through L0L_0L0​ Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
428
1,144
0
04 Dec 2017
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
83
550
0
10 Jan 2017
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
204
6,184
0
15 Sep 2016
Inferring solutions of differential equations using noisy multi-fidelity
  data
Inferring solutions of differential equations using noisy multi-fidelity data
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
51
290
0
16 Jul 2016
1