Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.04599
Cited By
Preserving Privacy in Federated Learning with Ensemble Cross-Domain Knowledge Distillation
10 September 2022
Xuan Gong
Abhishek Sharma
Srikrishna Karanam
Ziyan Wu
Terrence Chen
David Doermann
Arun Innanje
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Preserving Privacy in Federated Learning with Ensemble Cross-Domain Knowledge Distillation"
38 / 38 papers shown
Title
Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
Abhijit Chunduru
Majid Morafah
Mahdi Morafah
Vishnu Pandi Chellapandi
Ang Li
FedML
49
0
0
26 May 2025
FedSaaS: Class-Consistency Federated Semantic Segmentation via Global Prototype Supervision and Local Adversarial Harmonization
Xiaoyang Yu
Xiaoming Wu
Xin Wang
Dongrun Li
Ming Yang
Peng Cheng
58
0
0
14 May 2025
Soft-Label Caching and Sharpening for Communication-Efficient Federated Distillation
Kitsuya Azuma
Takayuki Nishio
Yuichi Kitagawa
Wakako Nakano
Takahito Tanimura
FedML
177
0
0
28 Apr 2025
Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Yang Liu
Bingjie Yan
Tianyuan Zou
Jianqing Zhang
Zixuan Gu
...
Jiajian Li
Xiaozhou Ye
Ye Ouyang
Qiang Yang
Yanzhe Zhang
ALM
453
1
0
24 Apr 2025
Corrected with the Latest Version: Make Robust Asynchronous Federated Learning Possible
Chaoyi Lu
Yiding Sun
Pengbo Li
Zhichuan Yang
FedML
119
1
0
05 Apr 2025
FedBEns: One-Shot Federated Learning based on Bayesian Ensemble
Jacopo Talpini
Marco Savi
Giovanni Neglia
FedML
Presented at
ResearchTrend Connect | FedML
on
07 May 2025
145
0
0
19 Mar 2025
dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis
Luyuan Xie
Tianyu Luan
Wenyuan Cai
Guochen Yan
Zhaoyu Chen
Nan Xi
Yuejian Fang
Qingni Shen
Zhonghai Wu
Junsong Yuan
FedML
315
0
0
13 Mar 2025
Data-Free Black-Box Federated Learning via Zeroth-Order Gradient Estimation
Xinge Ma
Jin Wang
Xuejie Zhang
FedML
130
0
0
08 Mar 2025
One-shot Federated Learning Methods: A Practical Guide
Xiang Liu
Zhenheng Tang
Xia Li
Yijun Song
Sijie Ji
Zemin Liu
Bo Han
Linshan Jiang
Jialin Li
FedML
171
1
0
13 Feb 2025
DFDG: Data-Free Dual-Generator Adversarial Distillation for One-Shot Federated Learning
Kangyang Luo
Shuai Wang
Y. Fu
Renrong Shao
Xiang Li
Yunshi Lan
Ming Gao
Jinlong Shu
FedML
111
3
0
12 Sep 2024
Privacy-Preserving Federated Learning with Consistency via Knowledge Distillation Using Conditional Generator
Kangyang Luo
Shuai Wang
Xiang Li
Yunshi Lan
Ming Gao
Jinlong Shu
FedML
77
2
0
11 Sep 2024
FedTSA: A Cluster-based Two-Stage Aggregation Method for Model-heterogeneous Federated Learning
Boyu Fan
Chenrui Wu
Xiang Su
Pan Hui
FedML
108
3
0
06 Jul 2024
Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives
Linlin Wang
Tianqing Zhu
Wanlei Zhou
Philip S. Yu
65
2
0
16 Jun 2024
Harnessing Increased Client Participation with Cohort-Parallel Federated Learning
Akash Dhasade
Anne-Marie Kermarrec
Tuan-Anh Nguyen
Rafael Pires
M. Vos
FedML
149
0
0
24 May 2024
Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors
Chun-Yin Huang
Kartik Srinivas
Xin Zhang
Xiaoxiao Li
DD
136
7
0
19 May 2024
Beyond Noise: Privacy-Preserving Decentralized Learning with Virtual Nodes
Sayan Biswas
Mathieu Even
Anne-Marie Kermarrec
Laurent Massoulie
Rafael Pires
Rishi Sharma
M. Vos
76
3
0
15 Apr 2024
Federated Distillation: A Survey
Lin Li
Jianping Gou
Baosheng Yu
Lan Du
Zhang Yiand Dacheng Tao
DD
FedML
115
8
0
02 Apr 2024
A Comprehensive Survey of Federated Transfer Learning: Challenges, Methods and Applications
Wei Guo
Fuzhen Zhuang
Xiao Zhang
Yiqi Tong
Jin Dong
FedML
90
19
0
03 Mar 2024
On the Byzantine-Resilience of Distillation-Based Federated Learning
Christophe Roux
Max Zimmer
Sebastian Pokutta
AAML
150
1
0
19 Feb 2024
Direct Distillation between Different Domains
Jialiang Tang
Shuo Chen
Gang Niu
Hongyuan Zhu
Qiufeng Wang
Chen Gong
Masashi Sugiyama
128
3
0
12 Jan 2024
Federated Learning via Input-Output Collaborative Distillation
Xuan Gong
Shanglin Li
Yuxiang Bao
Barry Yao
Yawen Huang
Ziyan Wu
Baochang Zhang
Yefeng Zheng
David Doermann
FedML
71
6
0
22 Dec 2023
Eliminating Domain Bias for Federated Learning in Representation Space
Jianqing Zhang
Yang Hua
Jian Cao
Hao Wang
Tao Song
Zhengui Xue
Ruhui Ma
Haibing Guan
FedML
113
35
0
25 Nov 2023
Little is Enough: Improving Privacy by Sharing Labels in Federated Semi-Supervised Learning
Amr Abourayya
Jens Kleesiek
Kanishka Rao
Erman Ayday
Bharat Rao
Geoff Webb
Michael Kamp
FedML
67
0
0
09 Oct 2023
REFT: Resource-Efficient Federated Training Framework for Heterogeneous and Resource-Constrained Environments
Humaid Ahmed Desai
Amr B. Hilal
Hoda Eldardiry
49
0
0
25 Aug 2023
Heterogeneous Federated Learning via Personalized Generative Networks
Zahra Taghiyarrenani
Abdallah S. Abdallah
Sławomir Nowaczyk
Sepideh Pashami
FedML
63
0
0
25 Aug 2023
Communication-Efficient Search under Fully Homomorphic Encryption for Federated Machine Learning
Dongfang Zhao
FedML
77
1
0
09 Aug 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
109
28
0
20 Jul 2023
Towards Open Federated Learning Platforms: Survey and Vision from Technical and Legal Perspectives
Moming Duan
Qinbin Li
Linshan Jiang
Bingsheng He
FedML
98
5
0
05 Jul 2023
Federated Generative Learning with Foundation Models
Jie Zhang
Xiaohua Qi
Bo Zhao
FedML
116
22
0
28 Jun 2023
FedPDD: A Privacy-preserving Double Distillation Framework for Cross-silo Federated Recommendation
Sheng Wan
Dashan Gao
Hanlin Gu
Daning Hu
FedML
58
7
0
09 May 2023
Model-Contrastive Federated Domain Adaptation
Chang’an Yi
Haotian Chen
Yonghui Xu
Yifan Zhang
MedIm
FedML
57
0
0
07 May 2023
Federated Learning over Coupled Graphs
Runze Lei
Peijie Wang
Junzhou Zhao
Lin Lan
Jing Tao
Chao Deng
Junlan Feng
Xidian Wang
Xiaohong Guan
FedML
99
15
0
26 Jan 2023
Decentralized Learning with Multi-Headed Distillation
A. Zhmoginov
Mark Sandler
Nolan Miller
Gus Kristiansen
Max Vladymyrov
FedML
75
4
0
28 Nov 2022
A Survey on Heterogeneous Federated Learning
Dashan Gao
Xin Yao
Qian Yang
FedML
99
63
0
10 Oct 2022
Domain Discrepancy Aware Distillation for Model Aggregation in Federated Learning
Shangchao Su
Bin Li
Xiangyang Xue
FedML
69
1
0
04 Oct 2022
Reducing Impacts of System Heterogeneity in Federated Learning using Weight Update Magnitudes
Irene Wang
78
1
0
30 Aug 2022
FEL: High Capacity Learning for Recommendation and Ranking via Federated Ensemble Learning
Meisam Hejazinia
Dzmitry Huba
Ilias Leontiadis
Kiwan Maeng
Mani Malek
Luca Melis
Ilya Mironov
Milad Nasr
Kaikai Wang
Carole-Jean Wu
FedML
72
6
0
07 Jun 2022
FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation
Haokun Chen
A. Frikha
Denis Krompass
Jindong Gu
Volker Tresp
OOD
83
26
0
30 May 2022
1