Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.03310
Cited By
Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census
7 September 2022
Daniel Kifer
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
Philip Leclerc
Ashwin Machanavajjhala
William Sexton
Pavel I Zhuravlev
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census"
9 / 9 papers shown
Title
The 2020 United States Decennial Census Is More Private Than You (Might) Think
Buxin Su
Weijie J. Su
Chendi Wang
58
3
0
11 Oct 2024
Slowly Scaling Per-Record Differential Privacy
Brian Finley
Anthony M Caruso
Justin C Doty
Ashwin Machanavajjhala
Mikaela R Meyer
David Pujol
William Sexton
Zachary Terner
64
1
0
26 Sep 2024
An Uncertainty Principle is a Price of Privacy-Preserving Microdata
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
S. Garfinkel
Daniel Kifer
Philip Leclerc
William Sexton
Ashley Simpson
Christine Task
Pavel I Zhuravlev
47
16
0
25 Oct 2021
Individual Privacy Accounting via a Renyi Filter
Vitaly Feldman
Tijana Zrnic
81
90
0
25 Aug 2020
Differential Privacy at Risk: Bridging Randomness and Privacy Budget
Ashish Dandekar
D. Basu
S. Bressan
76
8
0
02 Mar 2020
Element Level Differential Privacy: The Right Granularity of Privacy
Hilal Asi
John C. Duchi
O. Javidbakht
46
18
0
05 Dec 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
56
124
0
04 Jun 2019
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
Borja Balle
Yu Wang
MLT
64
403
0
16 May 2018
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
98
679
0
04 Nov 2013
1