Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.03276
Cited By
Inverse modeling of nonisothermal multiphase poromechanics using physics-informed neural networks
7 September 2022
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverse modeling of nonisothermal multiphase poromechanics using physics-informed neural networks"
17 / 17 papers shown
Title
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
131
200
0
14 Mar 2022
Physics-informed neural network solution of thermo-hydro-mechanical (THM) processes in porous media
Daniel Amini
E. Haghighat
R. Juanes
PINN
AI4CE
49
23
0
03 Mar 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
97
1,249
0
14 Jan 2022
Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training
E. Haghighat
Daniel Amini
R. Juanes
PINN
AI4CE
63
99
0
06 Oct 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
59
1,174
0
20 May 2021
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture
S. Niaki
E. Haghighat
Trevor Campbell
Xinglong Li
R. Vaziri
AI4CE
98
208
0
27 Nov 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
119
903
0
28 Jul 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
54
224
0
10 Jun 2020
Physics-informed deep learning for incompressible laminar flows
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
98
223
0
24 Feb 2020
Physics-informed Neural Networks for Solving Nonlinear Diffusivity and Biot's equations
T. Kadeethum
T. Jørgensen
H. Nick
PINN
AI4CE
79
110
0
19 Feb 2020
Physics Informed Deep Learning for Transport in Porous Media. Buckley Leverett Problem
Cedric G. Fraces
Adrien Papaioannou
H. Tchelepi
AI4CE
PINN
54
19
0
15 Jan 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
89
293
0
13 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
354
42,299
0
03 Dec 2019
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Zhao Chen
Vijay Badrinarayanan
Chen-Yu Lee
Andrew Rabinovich
ODL
140
1,282
0
07 Nov 2017
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
398
18,334
0
27 May 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
148
2,796
0
20 Feb 2015
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
67
159
0
19 Mar 2014
1