ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02662
  4. Cited By
Matching Consumer Fairness Objectives & Strategies for RecSys

Matching Consumer Fairness Objectives & Strategies for RecSys

6 September 2022
Michael D. Ekstrand
M. S. Pera
    FaML
ArXivPDFHTML

Papers citing "Matching Consumer Fairness Objectives & Strategies for RecSys"

6 / 6 papers shown
Title
The Impossibility of Fair LLMs
The Impossibility of Fair LLMs
Jacy Reese Anthis
Kristian Lum
Michael Ekstrand
Avi Feller
Alexander D’Amour
Chenhao Tan
FaML
45
11
0
28 May 2024
Context Matters for Image Descriptions for Accessibility: Challenges for
  Referenceless Evaluation Metrics
Context Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics
Elisa Kreiss
Cynthia L. Bennett
Shayan Hooshmand
E. Zelikman
Meredith Ringel Morris
Christopher Potts
48
27
0
21 May 2022
User-oriented Fairness in Recommendation
User-oriented Fairness in Recommendation
Yunqi Li
H. Chen
Zuohui Fu
Yingqiang Ge
Yongfeng Zhang
FaML
102
230
0
21 Apr 2021
Achieving User-Side Fairness in Contextual Bandits
Achieving User-Side Fairness in Contextual Bandits
Wen Huang
Kevin Labille
Xintao Wu
Dongwon Lee
Neil T. Heffernan
FaML
84
18
0
22 Oct 2020
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
743
0
13 Dec 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
674
0
17 Feb 2018
1