ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02075
  4. Cited By
The SZ flux-mass ($Y$-$M$) relation at low halo masses: improvements
  with symbolic regression and strong constraints on baryonic feedback

The SZ flux-mass (YYY-MMM) relation at low halo masses: improvements with symbolic regression and strong constraints on baryonic feedback

5 September 2022
D. Wadekar
L. Thiele
J. Hill
S. Pandey
F. Villaescusa-Navarro
D. Spergel
M. Cranmer
D. Nagai
D. Anglés-Alcázar
S. Ho
L. Hernquist
    AI4CE
ArXivPDFHTML

Papers citing "The SZ flux-mass ($Y$-$M$) relation at low halo masses: improvements with symbolic regression and strong constraints on baryonic feedback"

5 / 5 papers shown
Title
SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning for Compression
SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning for Compression
Ho Fung Tsoi
Vladimir Loncar
S. Dasu
Philip C. Harris
44
3
0
18 Jan 2024
Interpretable Machine Learning for Science with PySR and
  SymbolicRegression.jl
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
M. Cranmer
46
40
0
02 May 2023
The CAMELS project: Expanding the galaxy formation model space with new
  ASTRID and 28-parameter TNG and SIMBA suites
The CAMELS project: Expanding the galaxy formation model space with new ASTRID and 28-parameter TNG and SIMBA suites
Y. Ni
S. Genel
D. Anglés-Alcázar
F. Villaescusa-Navarro
Yongseok Jo
...
M. Gebhardt
Helen Shao
S. Pandey
L. Hernquist
R. Davé
26
22
0
04 Apr 2023
Exhaustive Symbolic Regression
Exhaustive Symbolic Regression
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
33
26
0
21 Nov 2022
Augmenting astrophysical scaling relations with machine learning:
  application to reducing the Sunyaev-Zeldovich flux-mass scatter
Augmenting astrophysical scaling relations with machine learning: application to reducing the Sunyaev-Zeldovich flux-mass scatter
D. Wadekar
L. Thiele
F. Villaescusa-Navarro
J. Hill
M. Cranmer
D. Spergel
N. Battaglia
D. Anglés-Alcázar
L. Hernquist
S. Ho
54
12
0
04 Jan 2022
1