ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.01610
  4. Cited By
Generalization in Neural Networks: A Broad Survey

Generalization in Neural Networks: A Broad Survey

4 September 2022
Chris Rohlfs
    OOD
    AI4CE
ArXivPDFHTML

Papers citing "Generalization in Neural Networks: A Broad Survey"

11 / 61 papers shown
Title
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
328
4,624
0
10 Nov 2016
Tying Word Vectors and Word Classifiers: A Loss Framework for Language
  Modeling
Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling
Hakan Inan
Khashayar Khosravi
R. Socher
108
384
0
04 Nov 2016
Using the Output Embedding to Improve Language Models
Using the Output Embedding to Improve Language Models
Ofir Press
Lior Wolf
67
733
0
20 Aug 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
99
2,004
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
351
7,316
0
13 Jun 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
326
7,971
0
23 May 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
838
27,303
0
02 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
439
43,277
0
11 Feb 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
422
43,635
0
17 Sep 2014
One weird trick for parallelizing convolutional neural networks
One weird trick for parallelizing convolutional neural networks
A. Krizhevsky
GNN
88
1,302
0
23 Apr 2014
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
438
7,658
0
03 Jul 2012
Previous
12