Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.14995
Cited By
Discovering Conservation Laws using Optimal Transport and Manifold Learning
31 August 2022
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Discovering Conservation Laws using Optimal Transport and Manifold Learning"
8 / 8 papers shown
Title
AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations
Ziming Liu
Varun Madhavan
M. Tegmark
PINN
64
28
0
23 Mar 2022
Manifold learning with arbitrary norms
Joe Kileel
Amit Moscovich
Nathan Zelesko
A. Singer
86
26
0
28 Dec 2020
Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
45
66
0
09 Mar 2020
Discovering conservation laws from data for control
E. Kaiser
J. Nathan Kutz
Steven L. Brunton
48
49
0
02 Nov 2018
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
53
524
0
18 Oct 2018
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
130
417
0
01 Jul 2017
Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
Jason M. Altschuler
Jonathan Niles-Weed
Philippe Rigollet
OT
56
587
0
26 May 2017
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
142
4,210
0
04 Jun 2013
1