Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.14137
Cited By
On the Trade-Off between Actionable Explanations and the Right to be Forgotten
30 August 2022
Martin Pawelczyk
Tobias Leemann
Asia J. Biega
Gjergji Kasneci
FaML
MU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Trade-Off between Actionable Explanations and the Right to be Forgotten"
22 / 22 papers shown
Title
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk
Jimmy Z. Di
Yiwei Lu
Gautam Kamath
Ayush Sekhari
Seth Neel
AAML
MU
118
17
0
25 Jun 2024
MultiDelete for Multimodal Machine Unlearning
Jiali Cheng
Hadi Amiri
MU
87
8
0
18 Nov 2023
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
49
23
0
15 Dec 2021
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms
Martin Pawelczyk
Sascha Bielawski
J. V. D. Heuvel
Tobias Richter
Gjergji Kasneci
CML
60
105
0
02 Aug 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
58
26
0
29 Jun 2021
Counterfactual Explanations Can Be Manipulated
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
64
137
0
04 Jun 2021
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
52
109
0
26 Feb 2021
Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS
Lin Chen
Sheng Xu
122
94
0
22 Sep 2020
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
Kaivalya Rawal
Himabindu Lakkaraju
45
11
0
15 Sep 2020
Data Minimization for GDPR Compliance in Machine Learning Models
Abigail Goldsteen
Gilad Ezov
Ron Shmelkin
Micha Moffie
Ariel Farkash
28
64
0
06 Aug 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
82
116
0
11 Jun 2020
Operationalizing the Legal Principle of Data Minimization for Personalization
Asia J. Biega
P. Potash
Hal Daumé
Fernando Diaz
Michèle Finck
AILaw
80
69
0
28 May 2020
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
62
258
0
23 Apr 2020
A Distributional Framework for Data Valuation
Amirata Ghorbani
Michael P. Kim
James Zou
TDI
49
131
0
27 Feb 2020
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks
Aditya Golatkar
Alessandro Achille
Stefano Soatto
CLL
MU
73
491
0
12 Nov 2019
A Higher-Order Swiss Army Infinitesimal Jackknife
Ryan Giordano
Michael I. Jordan
Tamara Broderick
UQCV
42
30
0
28 Jul 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
91
321
0
27 May 2019
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
219
1,272
0
04 Oct 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
108
681
0
28 Jun 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
115
589
0
21 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
107
2,354
0
01 Nov 2017
Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking
Gabriele Tolomei
Fabrizio Silvestri
Andrew Haines
M. Lalmas
58
208
0
20 Jun 2017
1