Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.12866
Cited By
Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation
26 August 2022
Pedro J. Freire
A. Napoli
D. A. Ron
B. Spinnler
M. Anderson
W. Schairer
T. Bex
N. Costa
S. Turitsyn
Jaroslaw E. Prilepsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reducing Computational Complexity of Neural Networks in Optical Channel Equalization: From Concepts to Implementation"
21 / 21 papers shown
Title
Power-of-Two Quantization for Low Bitwidth and Hardware Compliant Neural Networks
Dominika Przewlocka-Rus
Syed Shakib Sarwar
H. Sumbul
Yuecheng Li
B. D. Salvo
MQ
53
30
0
09 Mar 2022
Domain Adaptation: the Key Enabler of Neural Network Equalizers in Coherent Optical Systems
Pedro J. Freire
B. Spinnler
Daniel Abode
Jaroslaw E. Prilepsky
Abdallah A. i. Ali
N. Costa
W. Schairer
A. Napoli
A. Ellis
S. Turitsyn
OOD
40
14
0
25 Feb 2022
Neural Network Quantization for Efficient Inference: A Survey
Olivia Weng
MQ
33
23
0
08 Dec 2021
Performance and Complexity Analysis of bi-directional Recurrent Neural Network Models vs. Volterra Nonlinear Equalizers in Digital Coherent Systems
S. Deligiannidis
C. Mesaritakis
Adonis Bogris
33
45
0
03 Mar 2021
Fixed-point Quantization of Convolutional Neural Networks for Quantized Inference on Embedded Platforms
Rishabh Goyal
Joaquin Vanschoren
V. V. Acht
S. Nijssen
MQ
48
23
0
03 Feb 2021
Physics-Based Deep Learning for Fiber-Optic Communication Systems
Christian Hager
H. Pfister
44
68
0
27 Oct 2020
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
C. Coelho
Aki Kuusela
Shane Li
Zhuang Hao
T. Aarrestad
Vladimir Loncar
J. Ngadiuba
M. Pierini
Adrian Alan Pol
S. Summers
MQ
50
178
0
15 Jun 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
236
1,040
0
06 Mar 2020
Compensation of Fiber Nonlinearities in Digital Coherent Systems Leveraging Long Short-Term Memory Neural Networks
S. Deligiannidis
Adonis Bogris
C. Mesaritakis
Y. Kopsinis
18
69
0
31 Jan 2020
Additive Powers-of-Two Quantization: An Efficient Non-uniform Discretization for Neural Networks
Yuhang Li
Xin Dong
Wei Wang
MQ
40
255
0
28 Sep 2019
DeepShift: Towards Multiplication-Less Neural Networks
Mostafa Elhoushi
Zihao Chen
F. Shafiq
Ye Tian
Joey Yiwei Li
MQ
56
97
0
30 May 2019
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
Zechun Liu
Haoyuan Mu
Xiangyu Zhang
Zichao Guo
Xin Yang
K. Cheng
Jian Sun
48
557
0
25 Mar 2019
Towards Hardware Implementation of Neural Network-based Communication Algorithms
Fayçal Ait Aoudia
J. Hoydis
32
11
0
19 Feb 2019
A Tutorial on Bayesian Optimization
P. Frazier
GP
73
1,759
0
08 Jul 2018
Deep
k
k
k
-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions
Junru Wu
Yue Wang
Zhenyu Wu
Zhangyang Wang
Ashok Veeraraghavan
Yingyan Lin
30
115
0
24 Jun 2018
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li Li
Song Han
60
1,346
0
10 Feb 2018
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
110
3,090
0
15 Dec 2017
To prune, or not to prune: exploring the efficacy of pruning for model compression
Michael Zhu
Suyog Gupta
106
1,262
0
05 Oct 2017
Training Quantized Nets: A Deeper Understanding
Hao Li
Soham De
Zheng Xu
Christoph Studer
H. Samet
Tom Goldstein
MQ
35
210
0
07 Jun 2017
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
172
8,793
0
01 Oct 2015
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
249
7,883
0
13 Jun 2012
1