ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.11080
  4. Cited By
SurvSHAP(t): Time-dependent explanations of machine learning survival
  models

SurvSHAP(t): Time-dependent explanations of machine learning survival models

23 August 2022
Mateusz Krzyzinski
Mikolaj Spytek
Hubert Baniecki
P. Biecek
    FAtt
    AI4TS
ArXivPDFHTML

Papers citing "SurvSHAP(t): Time-dependent explanations of machine learning survival models"

8 / 8 papers shown
Title
Enhancing Visual Interpretability and Explainability in Functional Survival Trees and Forests
Enhancing Visual Interpretability and Explainability in Functional Survival Trees and Forests
Giuseppe Loffredo
Elvira Romano
Fabrizio Maturo
38
0
0
25 Apr 2025
Efficient and Accurate Explanation Estimation with Distribution Compression
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
50
3
0
26 Jun 2024
Interpretable Prediction and Feature Selection for Survival Analysis
Interpretable Prediction and Feature Selection for Survival Analysis
Mike Van Ness
Madeleine Udell
39
2
0
23 Apr 2024
SurvBeX: An explanation method of the machine learning survival models
  based on the Beran estimator
SurvBeX: An explanation method of the machine learning survival models based on the Beran estimator
Lev V. Utkin
Danila Eremenko
A. Konstantinov
32
4
0
07 Aug 2023
FastSHAP: Real-Time Shapley Value Estimation
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
67
127
0
15 Jul 2021
SurvNAM: The machine learning survival model explanation
SurvNAM: The machine learning survival model explanation
Lev V. Utkin
Egor D. Satyukov
A. Konstantinov
AAML
FAtt
44
28
0
18 Apr 2021
SurvLIME: A method for explaining machine learning survival models
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
108
89
0
18 Mar 2020
DeepSurv: Personalized Treatment Recommender System Using A Cox
  Proportional Hazards Deep Neural Network
DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network
Jared Katzman
Uri Shaham
Jonathan Bates
A. Cloninger
Tingting Jiang
Y. Kluger
BDL
CML
OOD
119
1,233
0
02 Jun 2016
1