ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.10868
  4. Cited By
AppGNN: Approximation-Aware Functional Reverse Engineering using Graph
  Neural Networks

AppGNN: Approximation-Aware Functional Reverse Engineering using Graph Neural Networks

23 August 2022
Tim Bücher
Lilas Alrahis
Guilherme Paim
S. Bampi
Ozgur Sinanoglu
H. Amrouch
ArXiv (abs)PDFHTML

Papers citing "AppGNN: Approximation-Aware Functional Reverse Engineering using Graph Neural Networks"

3 / 3 papers shown
Title
GraphSAINT: Graph Sampling Based Inductive Learning Method
GraphSAINT: Graph Sampling Based Inductive Learning Method
Hanqing Zeng
Hongkuan Zhou
Ajitesh Srivastava
Rajgopal Kannan
Viktor Prasanna
GNN
137
968
0
10 Jul 2019
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,225
0
30 Oct 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
652
29,154
0
09 Sep 2016
1