Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.10161
Cited By
MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering
22 August 2022
Rui Wang
Xingkai Wang
H. Chen
Jérémie Decouchant
S. Picek
Ziqiang Liu
K. Liang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering"
33 / 33 papers shown
Title
Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting
Yuchen Liu
Chen Chen
Lingjuan Lyu
Fangzhao Wu
Sai Wu
Gang Chen
43
13
0
13 Feb 2023
BayBFed: Bayesian Backdoor Defense for Federated Learning
Kavita Kumari
Phillip Rieger
Hossein Fereidooni
Murtuza Jadliwala
A. Sadeghi
AAML
FedML
54
33
0
23 Jan 2023
EIFFeL: Ensuring Integrity for Federated Learning
A. Chowdhury
Chuan Guo
S. Jha
Laurens van der Maaten
FedML
119
75
0
23 Dec 2021
FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping
Xiaoyu Cao
Minghong Fang
Jia Liu
Neil Zhenqiang Gong
FedML
158
637
0
27 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
632
41,003
0
22 Oct 2020
Feature Inference Attack on Model Predictions in Vertical Federated Learning
Xinjian Luo
Yuncheng Wu
Xiaokui Xiao
Beng Chin Ooi
FedML
AAML
41
225
0
20 Oct 2020
Improving Deep Learning with Differential Privacy using Gradient Encoding and Denoising
Milad Nasr
Reza Shokri
Amir Houmansadr
34
41
0
22 Jul 2020
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
Hongyi Wang
Kartik K. Sreenivasan
Shashank Rajput
Harit Vishwakarma
Saurabh Agarwal
Jy-yong Sohn
Kangwook Lee
Dimitris Papailiopoulos
FedML
76
604
0
09 Jul 2020
An Efficient Framework for Clustered Federated Learning
Avishek Ghosh
Jichan Chung
Dong Yin
Kannan Ramchandran
FedML
68
858
0
07 Jun 2020
SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning
Nishat Koti
Mahak Pancholi
A. Patra
Ajith Suresh
61
144
0
20 May 2020
Convolution-Weight-Distribution Assumption: Rethinking the Criteria of Channel Pruning
Zhongzhan Huang
Wenqi Shao
Xinjiang Wang
Liang Lin
Ping Luo
44
54
0
24 Apr 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
98
1,223
0
31 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,407
0
03 Dec 2019
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
Minghong Fang
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
OOD
FedML
101
1,108
0
26 Nov 2019
The Value of Collaboration in Convex Machine Learning with Differential Privacy
Nan Wu
Farhad Farokhi
David B. Smith
M. Kâafar
FedML
54
98
0
24 Jun 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
92
2,204
0
21 Jun 2019
Zeno++: Robust Fully Asynchronous SGD
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
FedML
51
106
0
17 Mar 2019
XONN: XNOR-based Oblivious Deep Neural Network Inference
M. Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin E. Lauter
F. Koushanfar
FedML
GNN
BDL
56
282
0
19 Feb 2019
A Little Is Enough: Circumventing Defenses For Distributed Learning
Moran Baruch
Gilad Baruch
Yoav Goldberg
FedML
57
504
0
16 Feb 2019
A Hybrid Approach to Privacy-Preserving Federated Learning
Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
FedML
52
895
0
07 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
134
1,419
0
03 Dec 2018
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
278
1,054
0
29 Nov 2018
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
97
1,913
0
02 Jul 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
116
1,499
0
05 Mar 2018
The Hidden Vulnerability of Distributed Learning in Byzantium
El-Mahdi El-Mhamdi
R. Guerraoui
Sébastien Rouault
AAML
FedML
67
748
0
22 Feb 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
90
1,043
0
13 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
687
131,526
0
12 Jun 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
201
6,113
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
394
17,453
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
109
1,589
0
27 Jun 2012
1