ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.09967
  4. Cited By
Inferring Sensitive Attributes from Model Explanations

Inferring Sensitive Attributes from Model Explanations

21 August 2022
Vasisht Duddu
A. Boutet
    MIACV
    SILM
ArXivPDFHTML

Papers citing "Inferring Sensitive Attributes from Model Explanations"

11 / 11 papers shown
Title
Counterfactual Explanations Can Be Manipulated
Counterfactual Explanations Can Be Manipulated
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
62
137
0
04 Jun 2021
Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be
  Secretly Coded into the Classifiers' Outputs
Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs
Mohammad Malekzadeh
Anastasia Borovykh
Deniz Gündüz
MIACV
59
42
0
25 May 2021
Measuring Data Leakage in Machine-Learning Models with Fisher
  Information
Measuring Data Leakage in Machine-Learning Models with Fisher Information
Awni Y. Hannun
Chuan Guo
Laurens van der Maaten
FedML
MIACV
49
56
0
23 Feb 2021
Robust and Stable Black Box Explanations
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
53
84
0
12 Nov 2020
Model extraction from counterfactual explanations
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
58
51
0
03 Sep 2020
"How do I fool you?": Manipulating User Trust via Misleading Black Box
  Explanations
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
56
254
0
15 Nov 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
  Methods
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
66
817
0
06 Nov 2019
Fooling Neural Network Interpretations via Adversarial Model
  Manipulation
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
88
202
0
06 Feb 2019
Exploiting Unintended Feature Leakage in Collaborative Learning
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
138
1,471
0
10 May 2018
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
180
3,865
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
175
5,968
0
04 Mar 2017
1