ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.09913
  4. Cited By
A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function
  Perspective

A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective

21 August 2022
Chanwoo Park
Sangdoo Yun
Sanghyuk Chun
    AAML
ArXivPDFHTML

Papers citing "A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective"

31 / 31 papers shown
Title
Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds?
Miao Zhang
Sherif Abdulatif
Benedikt Loesch
Marco Altmann
Bin Yang
59
0
0
04 Mar 2025
A Generalized Theory of Mixup for Structure-Preserving Synthetic Data
Chungpa Lee
Jongho Im
Joseph H.T. Kim
36
0
0
03 Mar 2025
SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe
SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe
Yuxin Xiao
Shujian Zhang
Wenxuan Zhou
Marzyeh Ghassemi
Sanqiang Zhao
100
0
0
07 Oct 2024
Effects of Common Regularization Techniques on Open-Set Recognition
Effects of Common Regularization Techniques on Open-Set Recognition
Zachary Rabin
Jim Davis
Benjamin Lewis
Matthew Scherreik
BDL
19
0
0
03 Sep 2024
Few-Shot Recognition via Stage-Wise Retrieval-Augmented Finetuning
Few-Shot Recognition via Stage-Wise Retrieval-Augmented Finetuning
Tian Liu
Huixin Zhang
Shubham Parashar
Shu Kong
29
2
0
17 Jun 2024
Recommendation of data-free class-incremental learning algorithms by
  simulating future data
Recommendation of data-free class-incremental learning algorithms by simulating future data
Eva Feillet
Adrian Daniel Popescu
C´eline Hudelot
41
0
0
26 Mar 2024
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
Muthuraman Chidambaram
Rong Ge
AAML
18
0
0
10 Feb 2024
Pushing Boundaries: Mixup's Influence on Neural Collapse
Pushing Boundaries: Mixup's Influence on Neural Collapse
Quinn Fisher
Haoming Meng
V. Papyan
AAML
UQCV
38
5
0
09 Feb 2024
Source-free Domain Adaptive Object Detection in Remote Sensing Images
Source-free Domain Adaptive Object Detection in Remote Sensing Images
Weixing Liu
Jun Liu
X. Su
Han Nie
Bin Luo
27
8
0
31 Jan 2024
RandMSAugment: A Mixed-Sample Augmentation for Limited-Data Scenarios
RandMSAugment: A Mixed-Sample Augmentation for Limited-Data Scenarios
Swarna Kamlam Ravindran
Carlo Tomasi
26
0
0
25 Nov 2023
Semantic Equivariant Mixup
Semantic Equivariant Mixup
Zongbo Han
Tianchi Xie
Bing Wu
Qinghua Hu
Changqing Zhang
AAML
56
0
0
12 Aug 2023
MiAMix: Enhancing Image Classification through a Multi-stage Augmented
  Mixed Sample Data Augmentation Method
MiAMix: Enhancing Image Classification through a Multi-stage Augmented Mixed Sample Data Augmentation Method
Wen-Chieh Liang
Youzhi Liang
Jianguo Jia
11
25
0
05 Aug 2023
The Effects of Mixed Sample Data Augmentation are Class Dependent
The Effects of Mixed Sample Data Augmentation are Class Dependent
Haeil Lee
Han S. Lee
Junmo Kim
34
1
0
18 Jul 2023
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
Provable Benefit of Mixup for Finding Optimal Decision Boundaries
Junsoo Oh
Chulee Yun
17
5
0
01 Jun 2023
Improved Probabilistic Image-Text Representations
Improved Probabilistic Image-Text Representations
Sanghyuk Chun
VLM
33
26
0
29 May 2023
Reweighted Mixup for Subpopulation Shift
Reweighted Mixup for Subpopulation Shift
Zongbo Han
Zhipeng Liang
Fan Yang
Liu Liu
Lanqing Li
...
P. Zhao
Qinghua Hu
Bing Wu
Changqing Zhang
Jianhua Yao
29
3
0
09 Apr 2023
Knowledge Distillation in Vision Transformers: A Critical Review
Knowledge Distillation in Vision Transformers: A Critical Review
Gousia Habib
Tausifa Jan Saleem
Brejesh Lall
23
15
0
04 Feb 2023
A Survey of Mix-based Data Augmentation: Taxonomy, Methods,
  Applications, and Explainability
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
Chengtai Cao
Fan Zhou
Yurou Dai
Jianping Wang
Kunpeng Zhang
AAML
18
28
0
21 Dec 2022
SelecMix: Debiased Learning by Contradicting-pair Sampling
SelecMix: Debiased Learning by Contradicting-pair Sampling
Inwoo Hwang
Sangjun Lee
Yunhyeok Kwak
Seong Joon Oh
Damien Teney
Jin-Hwa Kim
Byoung-Tak Zhang
OOD
326
28
0
04 Nov 2022
Provably Learning Diverse Features in Multi-View Data with Midpoint
  Mixup
Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
Muthuraman Chidambaram
Xiang Wang
Chenwei Wu
Rong Ge
MLT
4
7
0
24 Oct 2022
Similarity of Neural Architectures using Adversarial Attack
  Transferability
Similarity of Neural Architectures using Adversarial Attack Transferability
Jaehui Hwang
Dongyoon Han
Byeongho Heo
Song Park
Sanghyuk Chun
Jong-Seok Lee
AAML
26
1
0
20 Oct 2022
ResNet strikes back: An improved training procedure in timm
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
209
487
0
01 Oct 2021
SpecMix : A Mixed Sample Data Augmentation method for Training
  withTime-Frequency Domain Features
SpecMix : A Mixed Sample Data Augmentation method for Training withTime-Frequency Domain Features
Gwantae Kim
D. Han
Hanseok Ko
44
42
0
06 Aug 2021
MixSpeech: Data Augmentation for Low-resource Automatic Speech
  Recognition
MixSpeech: Data Augmentation for Low-resource Automatic Speech Recognition
Linghui Meng
Jin Xu
Xu Tan
Jindong Wang
Tao Qin
Bo Xu
VLM
64
77
0
25 Feb 2021
SWAD: Domain Generalization by Seeking Flat Minima
SWAD: Domain Generalization by Seeking Flat Minima
Junbum Cha
Sanghyuk Chun
Kyungjae Lee
Han-Cheol Cho
Seunghyun Park
Yunsung Lee
Sungrae Park
MoMe
216
423
0
17 Feb 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
298
3,693
0
11 Feb 2021
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Jang-Hyun Kim
Wonho Choo
Hosan Jeong
Hyun Oh Song
197
176
0
05 Feb 2021
Re-labeling ImageNet: from Single to Multi-Labels, from Global to
  Localized Labels
Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
Sangdoo Yun
Seong Joon Oh
Byeongho Heo
Dongyoon Han
Junsuk Choe
Sanghyuk Chun
395
142
0
13 Jan 2021
MixCo: Mix-up Contrastive Learning for Visual Representation
MixCo: Mix-up Contrastive Learning for Visual Representation
Sungnyun Kim
Gihun Lee
Sangmin Bae
Seyoung Yun
SSL
109
80
0
13 Oct 2020
Dropout: Explicit Forms and Capacity Control
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
61
37
0
06 Mar 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,888
0
15 Sep 2016
1