ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.08273
  4. Cited By
Quantum Machine Learning for Material Synthesis and Hardware Security

Quantum Machine Learning for Material Synthesis and Hardware Security

16 August 2022
Collin Beaudoin
Satwik Kundu
R. Topaloglu
Swaroop Ghosh
ArXiv (abs)PDFHTML

Papers citing "Quantum Machine Learning for Material Synthesis and Hardware Security"

11 / 11 papers shown
Title
Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems
Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems
Armando Bellante
Tommaso Fioravanti
Michele Carminati
S. Zanero
Alessandro Luongo
154
0
0
16 Feb 2025
The Dawn of Quantum Natural Language Processing
The Dawn of Quantum Natural Language Processing
R. Sipio
Jia-Hong Huang
Samuel Yen-Chi Chen
Stefano Mangini
Marcel Worring
127
86
0
13 Oct 2021
Quantum Long Short-Term Memory
Quantum Long Short-Term Memory
Samuel Yen-Chi Chen
Shinjae Yoo
Yao-Lung L. Fang
76
166
0
03 Sep 2020
A Graph to Graphs Framework for Retrosynthesis Prediction
A Graph to Graphs Framework for Retrosynthesis Prediction
Chence Shi
Minkai Xu
Hongyu Guo
Ming Zhang
Jian Tang
66
154
0
28 Mar 2020
Retrosynthesis Prediction with Conditional Graph Logic Network
Retrosynthesis Prediction with Conditional Graph Logic Network
H. Dai
Chengtao Li
Connor W. Coley
Bo Dai
Le Song
63
182
0
06 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
553
42,639
0
03 Dec 2019
Quantum machine learning: a classical perspective
Quantum machine learning: a classical perspective
C. Ciliberto
Mark Herbster
Alessandro Davide Ialongo
Massimiliano Pontil
Andrea Rocchetto
Simone Severini
Leonard Wossnig
AI4CE
83
441
0
26 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
803
132,454
0
12 Jun 2017
Retrosynthetic reaction prediction using neural sequence-to-sequence
  models
Retrosynthetic reaction prediction using neural sequence-to-sequence models
Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
P. Wender
Vijay S. Pande
63
420
0
06 Jun 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
180
2,939
0
07 Oct 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
1