ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.05314
  4. Cited By
Convergence of denoising diffusion models under the manifold hypothesis
v1v2 (latest)

Convergence of denoising diffusion models under the manifold hypothesis

10 August 2022
Valentin De Bortoli
    DiffM
ArXiv (abs)PDFHTML

Papers citing "Convergence of denoising diffusion models under the manifold hypothesis"

50 / 126 papers shown
Title
Geometric Regularity in Deterministic Sampling of Diffusion-based Generative Models
Geometric Regularity in Deterministic Sampling of Diffusion-based Generative Models
Defang Chen
Zhenyu Zhou
C. Wang
Siwei Lyu
DiffM
58
0
0
11 Jun 2025
Algorithm- and Data-Dependent Generalization Bounds for Score-Based Generative Models
Algorithm- and Data-Dependent Generalization Bounds for Score-Based Generative Models
Benjamin Dupuis
Dario Shariatian
Maxime Haddouche
Alain Durmus
Umut Simsekli
56
0
0
04 Jun 2025
Generalization in VAE and Diffusion Models: A Unified Information-Theoretic Analysis
Generalization in VAE and Diffusion Models: A Unified Information-Theoretic Analysis
Qi Chen
Jierui Zhu
Florian Shkurti
DiffM
60
1
0
01 Jun 2025
EquiReg: Equivariance Regularized Diffusion for Inverse Problems
EquiReg: Equivariance Regularized Diffusion for Inverse Problems
Bahareh Tolooshams
Aditi Chandrashekar
Rayhan Zirvi
Abbas Mammadov
Jiachen Yao
Chuwei Wang
Anima Anandkumar
DiffM
56
0
0
29 May 2025
Learning Single Index Models with Diffusion Priors
Learning Single Index Models with Diffusion Priors
Anqi Tang
Youming Chen
Shuchen Xue
Zhaoqiang Liu
DiffM
77
0
0
27 May 2025
Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Ziqiang Liu
Wei Zhang
Tiejun Li
DiffM
71
0
0
15 May 2025
Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients
Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients
Stefano Bruno
Sotirios Sabanis
DiffM
109
1
0
06 May 2025
Capturing Conditional Dependence via Auto-regressive Diffusion Models
Capturing Conditional Dependence via Auto-regressive Diffusion Models
Xunpeng Huang
Yujin Han
Difan Zou
Yian Ma
Tong Zhang
DiffM
104
0
0
30 Apr 2025
Generalization through variance: how noise shapes inductive biases in diffusion models
Generalization through variance: how noise shapes inductive biases in diffusion models
John J. Vastola
DiffM
486
5
0
16 Apr 2025
Dimension-Free Convergence of Diffusion Models for Approximate Gaussian Mixtures
Dimension-Free Convergence of Diffusion Models for Approximate Gaussian Mixtures
Gen Li
Changxiao Cai
Yuting Wei
DiffM
75
1
0
07 Apr 2025
Can Diffusion Models Disentangle? A Theoretical Perspective
Can Diffusion Models Disentangle? A Theoretical Perspective
Liming Wang
Muhammad Jehanzeb Mirza
Yishu Gong
Yuan Gong
Jiaqi Zhang
Brian Tracey
Katerina Placek
Marco Vilela
James Glass
DiffMCoGe
118
0
0
31 Mar 2025
Optimal Denoising in Score-Based Generative Models: The Role of Data Regularity
Optimal Denoising in Score-Based Generative Models: The Role of Data Regularity
Eliot Beyler
Francis Bach
DiffM
111
0
0
17 Mar 2025
Probability-Flow ODE in Infinite-Dimensional Function Spaces
Kunwoo Na
Junghyun Lee
Se-Young Yun
Sungbin Lim
79
0
0
13 Mar 2025
On the Interpolation Effect of Score Smoothing
On the Interpolation Effect of Score Smoothing
Zhengdao Chen
DiffM
148
1
0
26 Feb 2025
Optimal Stochastic Trace Estimation in Generative Modeling
Optimal Stochastic Trace Estimation in Generative Modeling
Xinyang Liu
Hengrong Du
Wei Deng
Ruqi Zhang
AI4TS
98
0
0
26 Feb 2025
Reward-Safety Balance in Offline Safe RL via Diffusion Regularization
Junyu Guo
Zhi Zheng
Donghao Ying
Ming Jin
Shangding Gu
C. Spanos
Javad Lavaei
OffRL
198
0
0
18 Feb 2025
How Compositional Generalization and Creativity Improve as Diffusion Models are Trained
How Compositional Generalization and Creativity Improve as Diffusion Models are Trained
Alessandro Favero
Antonio Sclocchi
Francesco Cagnetta
Pascal Frossard
Matthieu Wyart
DiffMCoGe
110
6
0
17 Feb 2025
Regularization can make diffusion models more efficient
Regularization can make diffusion models more efficient
Mahsa Taheri
Johannes Lederer
171
0
0
13 Feb 2025
An analysis of the noise schedule for score-based generative models
An analysis of the noise schedule for score-based generative models
SU StanislasStrasman
Antonio Ocello
Claire Boyer Lpsm
Sylvain Le Corff Lpsm
Vincent Lemaire
DiffM
189
7
0
28 Jan 2025
Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion Models
Adapting to Unknown Low-Dimensional Structures in Score-Based Diffusion Models
Gen Li
Yuling Yan
DiffM
117
23
0
03 Jan 2025
Wasserstein Bounds for generative diffusion models with Gaussian tail
  targets
Wasserstein Bounds for generative diffusion models with Gaussian tail targets
Xixian Wang
Zhongjian Wang
116
0
0
15 Dec 2024
Understanding Generalizability of Diffusion Models Requires Rethinking
  the Hidden Gaussian Structure
Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure
Xiang Li
Yixiang Dai
Qing Qu
DiffMAI4CE
104
16
0
31 Oct 2024
How Do Flow Matching Models Memorize and Generalize in Sample Data
  Subspaces?
How Do Flow Matching Models Memorize and Generalize in Sample Data Subspaces?
Weiguo Gao
Ming Li
OOD
99
3
0
31 Oct 2024
Kernel Approximation of Fisher-Rao Gradient Flows
Kernel Approximation of Fisher-Rao Gradient Flows
Jia Jie Zhu
Alexander Mielke
155
6
0
27 Oct 2024
Influential Language Data Selection via Gradient Trajectory Pursuit
Influential Language Data Selection via Gradient Trajectory Pursuit
Zhiwei Deng
Tao Li
Yang Li
62
1
0
22 Oct 2024
On the Relation Between Linear Diffusion and Power Iteration
On the Relation Between Linear Diffusion and Power Iteration
Dana Weitzner
M. Delbracio
P. Milanfar
Raja Giryes
DiffM
80
0
0
16 Oct 2024
Shallow diffusion networks provably learn hidden low-dimensional
  structure
Shallow diffusion networks provably learn hidden low-dimensional structure
Nicholas M. Boffi
Arthur Jacot
Stephen Tu
Ingvar M. Ziemann
DiffM
83
3
0
15 Oct 2024
Losing dimensions: Geometric memorization in generative diffusion
Losing dimensions: Geometric memorization in generative diffusion
Beatrice Achilli
Enrico Ventura
Gianluigi Silvestri
Bao Pham
G. Raya
Dmitry Krotov
Carlo Lucibello
L. Ambrogioni
106
6
0
11 Oct 2024
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
135
10
0
08 Oct 2024
Geometric Representation Condition Improves Equivariant Molecule Generation
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
104
2
0
04 Oct 2024
Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis
Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis
Zikun Zhang
Zixiang Chen
Quanquan Gu
DiffM
156
5
0
03 Oct 2024
Bellman Diffusion: Generative Modeling as Learning a Linear Operator in
  the Distribution Space
Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space
Yangming Li
Chieh-Hsin Lai
Carola-Bibiane Schönlieb
Yuki Mitsufuji
Stefano Ermon
DiffM
70
0
0
02 Oct 2024
Equivariant score-based generative models provably learn distributions
  with symmetries efficiently
Equivariant score-based generative models provably learn distributions with symmetries efficiently
Ziyu Chen
Markos A. Katsoulakis
Benjamin J. Zhang
DiffM
72
2
0
02 Oct 2024
Conditional Diffusion Models are Minimax-Optimal and Manifold-Adaptive
  for Conditional Distribution Estimation
Conditional Diffusion Models are Minimax-Optimal and Manifold-Adaptive for Conditional Distribution Estimation
Rong Tang
Lizhen Lin
Yun Yang
DiffM
76
1
0
30 Sep 2024
DroneDiffusion: Robust Quadrotor Dynamics Learning with Diffusion Models
DroneDiffusion: Robust Quadrotor Dynamics Learning with Diffusion Models
Avirup Das
Rishabh Dev Yadav
Sihao Sun
Mingfei Sun
Samuel Kaski
Wei Pan
74
2
0
17 Sep 2024
Theoretical guarantees in KL for Diffusion Flow Matching
Theoretical guarantees in KL for Diffusion Flow Matching
Marta Gentiloni Silveri
Giovanni Conforti
Alain Durmus
82
3
0
12 Sep 2024
DAP: Diffusion-based Affordance Prediction for Multi-modality Storage
DAP: Diffusion-based Affordance Prediction for Multi-modality Storage
Haonan Chang
Kowndinya Boyalakuntla
Yuhan Liu
Xinyu Zhang
Liam Schramm
Abdeslam Boularias
93
0
0
31 Aug 2024
A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion
  Models
A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models
Gen Li
Yuting Wei
Yuejie Chi
Yuxin Chen
DiffM
115
27
0
05 Aug 2024
Speed-accuracy relations for diffusion models: Wisdom from nonequilibrium thermodynamics and optimal transport
Speed-accuracy relations for diffusion models: Wisdom from nonequilibrium thermodynamics and optimal transport
Kotaro Ikeda
Tomoya Uda
Daisuke Okanohara
Sosuke Ito
DiffM
73
1
0
05 Jul 2024
ScoreFusion: Fusing Score-based Generative Models via Kullback-Leibler Barycenters
ScoreFusion: Fusing Score-based Generative Models via Kullback-Leibler Barycenters
Hao Liu
Junze Tony Ye
Ye
Jose H. Blanchet
DiffMFedML
116
1
0
28 Jun 2024
Provable Statistical Rates for Consistency Diffusion Models
Provable Statistical Rates for Consistency Diffusion Models
Zehao Dou
Minshuo Chen
Mengdi Wang
Zhuoran Yang
DiffM
102
3
0
23 Jun 2024
Evaluating the design space of diffusion-based generative models
Evaluating the design space of diffusion-based generative models
Yuqing Wang
Ye He
Molei Tao
DiffM
97
6
0
18 Jun 2024
Mean-field Chaos Diffusion Models
Mean-field Chaos Diffusion Models
S. Park
Dongjun Kim
Ahmed Alaa
DiffM
63
1
0
08 Jun 2024
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension
  Estimation with Diffusion Models
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
Hamidreza Kamkari
Brendan Leigh Ross
Rasa Hosseinzadeh
Jesse C. Cresswell
Gabriel Loaiza-Ganem
DiffM
94
16
0
05 Jun 2024
Hardness of Learning Neural Networks under the Manifold Hypothesis
Hardness of Learning Neural Networks under the Manifold Hypothesis
B. Kiani
Jason Wang
Melanie Weber
72
4
0
03 Jun 2024
Convergence of the denoising diffusion probabilistic models for general noise schedules
Convergence of the denoising diffusion probabilistic models for general noise schedules
Yumiharu Nakano
DiffM
151
1
0
03 Jun 2024
Global Well-posedness and Convergence Analysis of Score-based Generative
  Models via Sharp Lipschitz Estimates
Global Well-posedness and Convergence Analysis of Score-based Generative Models via Sharp Lipschitz Estimates
Connor Mooney
Zhongjian Wang
Jack Xin
Yifeng Yu
69
2
0
25 May 2024
Score-based generative models are provably robust: an uncertainty
  quantification perspective
Score-based generative models are provably robust: an uncertainty quantification perspective
Nikiforos Mimikos-Stamatopoulos
Benjamin J. Zhang
Markos A. Katsoulakis
DiffM
89
7
0
24 May 2024
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
A. Bose
Francesco Di Giovanni
82
22
0
23 May 2024
Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors
Diffusion models for Gaussian distributions: Exact solutions and Wasserstein errors
Émile Pierret
Bruno Galerne
DiffM
100
3
0
23 May 2024
123
Next