ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.04751
  4. Cited By
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
v1v2 (latest)

Sampling algorithms in statistical physics: a guide for statistics and machine learning

9 August 2022
Michael F Faulkner
Samuel Livingstone
ArXiv (abs)PDFHTML

Papers citing "Sampling algorithms in statistical physics: a guide for statistics and machine learning"

18 / 18 papers shown
Title
The Apogee to Apogee Path Sampler
The Apogee to Apogee Path Sampler
Chris Sherlock
S. Urbas
Matthew Ludkin
76
6
0
15 Dec 2021
A general perspective on the Metropolis-Hastings kernel
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
81
25
0
29 Dec 2020
A comparison of learning rate selection methods in generalized Bayesian
  inference
A comparison of learning rate selection methods in generalized Bayesian inference
Pei-Shien Wu
Ryan Martin
BDL
45
47
0
21 Dec 2020
Gibbs posterior concentration rates under sub-exponential type losses
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
75
29
0
08 Dec 2020
Accelerated Sampling on Discrete Spaces with Non-Reversible Markov
  Processes
Accelerated Sampling on Discrete Spaces with Non-Reversible Markov Processes
Samuel Power
Jacob Vorstrup Goldman
66
31
0
10 Dec 2019
Markov chain Monte Carlo algorithms with sequential proposals
Markov chain Monte Carlo algorithms with sequential proposals
Joonha Park
Yves F. Atchadé
BDL
32
13
0
15 Jul 2019
Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo
Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo
Christophe Andrieu
Alain Durmus
Nikolas Nusken
Julien Roussel
41
50
0
26 Aug 2018
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy
  Particle Sampler and Dimension-Free Convergence Rates
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates
George Deligiannidis
Daniel Paulin
Alexandre Bouchard-Côté
Arnaud Doucet
71
52
0
13 Aug 2018
Principles of Bayesian Inference using General Divergence Criteria
Principles of Bayesian Inference using General Divergence Criteria
Jack Jewson
Jim Q. Smith
Chris Holmes
67
88
0
26 Feb 2018
Geometric integrators and the Hamiltonian Monte Carlo method
Geometric integrators and the Hamiltonian Monte Carlo method
Nawaf Bou-Rabee
J. Sanz-Serna
62
98
0
14 Nov 2017
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
48
108
0
23 Nov 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
96
233
0
11 Jul 2016
Towards Unifying Hamiltonian Monte Carlo and Slice Sampling
Towards Unifying Hamiltonian Monte Carlo and Slice Sampling
Yizhe Zhang
Xiangyu Wang
Changyou Chen
Ricardo Henao
Kai Fan
Lawrence Carin
173
21
0
25 Feb 2016
Inconsistency of Bayesian Inference for Misspecified Linear Models, and
  a Proposal for Repairing It
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Peter Grünwald
T. V. Ommen
106
268
0
11 Dec 2014
A General Framework for Updating Belief Distributions
A General Framework for Updating Belief Distributions
Pier Giovanni Bissiri
Chris Holmes
S. Walker
240
479
0
27 Jun 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
298
3,282
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
189
4,315
0
18 Nov 2011
CLTs and asymptotic variance of time-sampled Markov chains
CLTs and asymptotic variance of time-sampled Markov chains
K. Łatuszyński
Gareth O. Roberts
84
23
0
10 Feb 2011
1