ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.04600
  4. Cited By
IDNP: Interest Dynamics Modeling using Generative Neural Processes for
  Sequential Recommendation

IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation

9 August 2022
Jing Du
Zesheng Ye
Lina Yao
Bin Guo
Zhiwen Yu
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation"

21 / 21 papers shown
Title
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
133
24
0
01 Sep 2022
Contrastive Conditional Neural Processes
Contrastive Conditional Neural Processes
Zesheng Ye
Lina Yao
UQCV
72
12
0
08 Mar 2022
MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation
MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation
Manqing Dong
Feng Yuan
Lina Yao
Xiwei Xu
Liming Zhu
CLL
51
167
0
07 Jul 2020
Wasserstein Neural Processes
Wasserstein Neural Processes
Andrew N. Carr
Jared Nielson
David Wingate
BDL
29
2
0
01 Oct 2019
CosRec: 2D Convolutional Neural Networks for Sequential Recommendation
CosRec: 2D Convolutional Neural Networks for Sequential Recommendation
An Yan
Shuo Cheng
Wang-Cheng Kang
Mengting Wan
Julian McAuley
3DVHAI
46
124
0
27 Aug 2019
MeLU: Meta-Learned User Preference Estimator for Cold-Start
  Recommendation
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation
Hoyeop Lee
Jinbae Im
Seongwon Jang
Hyunsouk Cho
Sehee Chung
45
365
0
31 Jul 2019
Future Data Helps Training: Modeling Future Contexts for Session-based
  Recommendation
Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation
Fajie Yuan
Xiangnan He
Haochuan Jiang
G. Guo
Jian Xiong
Zhezhao Xu
Yilin Xiong
AI4TS
68
103
0
11 Jun 2019
Sequential Scenario-Specific Meta Learner for Online Recommendation
Sequential Scenario-Specific Meta Learner for Online Recommendation
Zhengxiao Du
Xiaowei Wang
Hongxia Yang
Jingren Zhou
Jie Tang
OffRLLRMCLL
81
118
0
02 Jun 2019
Security and Privacy on Blockchain
Security and Privacy on Blockchain
Rui Zhang
Rui Xue
Ling Liu
45
773
0
18 Mar 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
104
442
0
17 Jan 2019
Self-Attentive Sequential Recommendation
Self-Attentive Sequential Recommendation
Wang-Cheng Kang
Julian McAuley
HAIBDL
178
2,442
0
20 Aug 2018
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
88
705
0
04 Jul 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
306
4,049
0
16 Nov 2017
Recurrent Neural Networks with Top-k Gains for Session-based
  Recommendations
Recurrent Neural Networks with Top-k Gains for Session-based Recommendations
Balázs Hidasi
Alexandros Karatzoglou
64
830
0
12 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
827
11,943
0
09 Mar 2017
Learning feed-forward one-shot learners
Learning feed-forward one-shot learners
Luca Bertinetto
João F. Henriques
Jack Valmadre
Philip Torr
Andrea Vedaldi
72
471
0
16 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
375
7,333
0
13 Jun 2016
Towards a Neural Statistician
Towards a Neural Statistician
Harrison Edwards
Amos Storkey
BDL
97
427
0
07 Jun 2016
Multi-Scale Context Aggregation by Dilated Convolutions
Multi-Scale Context Aggregation by Dilated Convolutions
Feng Yu
V. Koltun
SSeg
271
8,459
0
23 Nov 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
226
1,517
0
08 Jun 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
220
4,288
0
04 Jun 2013
1