Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.03889
Cited By
Robust Training and Verification of Implicit Neural Networks: A Non-Euclidean Contractive Approach
8 August 2022
Saber Jafarpour
A. Davydov
Matthew Abate
Francesco Bullo
Samuel Coogan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Training and Verification of Implicit Neural Networks: A Non-Euclidean Contractive Approach"
21 / 21 papers shown
Title
Comparative Analysis of Interval Reachability for Robust Implicit and Feedforward Neural Networks
A. Davydov
Saber Jafarpour
Matthew Abate
Francesco Bullo
Samuel Coogan
24
3
0
01 Apr 2022
Robustness Certificates for Implicit Neural Networks: A Mixed Monotone Contractive Approach
Saber Jafarpour
Matthew Abate
A. Davydov
Francesco Bullo
Samuel Coogan
AAML
34
8
0
10 Dec 2021
Robust Implicit Networks via Non-Euclidean Contractions
Saber Jafarpour
A. Davydov
A. Proskurnikov
Francesco Bullo
118
42
0
06 Jun 2021
Lipschitz Bounded Equilibrium Networks
Max Revay
Ruigang Wang
I. Manchester
19
76
0
05 Oct 2020
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
44
130
0
15 Jun 2020
Deep Equilibrium Models
Shaojie Bai
J. Zico Kolter
V. Koltun
59
663
0
03 Sep 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
52
178
0
17 Aug 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
54
346
0
14 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
69
451
0
12 Jun 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
99
2,018
0
08 Feb 2019
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
68
751
0
02 Nov 2018
On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models
Sven Gowal
Krishnamurthy Dvijotham
Robert Stanforth
Rudy Bunel
Chongli Qin
J. Uesato
Relja Arandjelović
Timothy A. Mann
Pushmeet Kohli
AAML
56
551
0
30 Oct 2018
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
66
344
0
10 Sep 2018
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
62
523
0
28 May 2018
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
78
1,495
0
02 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
227
11,962
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
103
1,851
0
20 May 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
134
952
0
01 Mar 2017
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
45
3,061
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
163
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
166
14,831
1
21 Dec 2013
1