Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.03113
Cited By
On the non-universality of deep learning: quantifying the cost of symmetry
5 August 2022
Emmanuel Abbe
Enric Boix-Adserà
FedML
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the non-universality of deep learning: quantifying the cost of symmetry"
6 / 6 papers shown
Title
Rao-Blackwell Gradient Estimators for Equivariant Denoising Diffusion
Vinh Tong
Trung-Dung Hoang
Anji Liu
Guy Van den Broeck
Mathias Niepert
DiffM
82
0
0
14 Feb 2025
Theoretical Analysis of Inductive Biases in Deep Convolutional Networks
Zihao Wang
Lei Wu
23
20
0
15 May 2023
A Mathematical Model for Curriculum Learning for Parities
Elisabetta Cornacchia
Elchanan Mossel
40
10
0
31 Jan 2023
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
77
23
0
09 Aug 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
176
1,111
0
27 Apr 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
1