Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.03107
Cited By
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
5 August 2022
Sheheryar Mehmood
Peter Ochs
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions"
28 / 28 papers shown
Title
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
64
22
0
31 May 2022
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Jérôme Bolte
Tam Le
Edouard Pauwels
Antonio Silveti-Falls
43
55
0
08 Jun 2021
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
74
27
0
04 May 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
174
233
0
23 Mar 2021
Multiscale Deep Equilibrium Models
Shaojie Bai
V. Koltun
J. Zico Kolter
BDL
80
211
0
15 Jun 2020
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
51
130
0
15 Jun 2020
A mathematical model for automatic differentiation in machine learning
Jérôme Bolte
Edouard Pauwels
35
68
0
03 Jun 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
362
1,967
0
11 Apr 2020
Total Deep Variation for Linear Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
50
89
0
14 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
384
42,299
0
03 Dec 2019
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
83
653
0
28 Oct 2019
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning
Jérôme Bolte
Edouard Pauwels
34
129
0
23 Sep 2019
Deep Equilibrium Models
Shaojie Bai
J. Zico Kolter
V. Koltun
78
665
0
03 Sep 2019
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
361
5,081
0
19 Jun 2018
Differentiable Dynamic Programming for Structured Prediction and Attention
A. Mensch
Mathieu Blondel
58
131
0
11 Feb 2018
Sensitivity Analysis for Mirror-Stratifiable Convex Functions
M. Fadili
J. Malick
Gabriel Peyré
42
26
0
11 Jul 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
207
416
0
06 Mar 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
150
958
0
01 Mar 2017
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
223
3,205
0
15 Jun 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
415
18,334
0
27 May 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
95
449
0
07 Feb 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
154
2,796
0
20 Feb 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
215
944
0
11 Feb 2015
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection
Charles-Alban Deledalle
Samuel Vaiter
M. Fadili
Gabriel Peyré
59
118
0
06 May 2014
The Degrees of Freedom of Partly Smooth Regularizers
Samuel Vaiter
Charles-Alban Deledalle
M. Fadili
Gabriel Peyré
C. Dossal
134
49
0
22 Apr 2014
Revisiting loss-specific training of filter-based MRFs for image restoration
Yunjin Chen
Thomas Pock
René Ranftl
Horst Bischof
58
64
0
16 Jan 2014
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
131
2,446
0
12 Dec 2010
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
Benjamin Recht
Maryam Fazel
P. Parrilo
380
3,764
0
28 Jun 2007
1