ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.03107
  4. Cited By
Fixed-Point Automatic Differentiation of Forward--Backward Splitting
  Algorithms for Partly Smooth Functions

Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions

5 August 2022
Sheheryar Mehmood
Peter Ochs
ArXivPDFHTML

Papers citing "Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions"

28 / 28 papers shown
Title
Automatic differentiation of nonsmooth iterative algorithms
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
64
22
0
31 May 2022
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Nonsmooth Implicit Differentiation for Machine Learning and Optimization
Jérôme Bolte
Tam Le
Edouard Pauwels
Antonio Silveti-Falls
43
55
0
08 Jun 2021
Implicit differentiation for fast hyperparameter selection in non-smooth
  convex learning
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
74
27
0
04 May 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
174
233
0
23 Mar 2021
Multiscale Deep Equilibrium Models
Multiscale Deep Equilibrium Models
Shaojie Bai
V. Koltun
J. Zico Kolter
BDL
80
211
0
15 Jun 2020
Monotone operator equilibrium networks
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
51
130
0
15 Jun 2020
A mathematical model for automatic differentiation in machine learning
A mathematical model for automatic differentiation in machine learning
Jérôme Bolte
Edouard Pauwels
35
68
0
03 Jun 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
362
1,967
0
11 Apr 2020
Total Deep Variation for Linear Inverse Problems
Total Deep Variation for Linear Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
50
89
0
14 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
384
42,299
0
03 Dec 2019
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
83
653
0
28 Oct 2019
Conservative set valued fields, automatic differentiation, stochastic
  gradient method and deep learning
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning
Jérôme Bolte
Edouard Pauwels
34
129
0
23 Sep 2019
Deep Equilibrium Models
Deep Equilibrium Models
Shaojie Bai
J. Zico Kolter
V. Koltun
78
665
0
03 Sep 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
361
5,081
0
19 Jun 2018
Differentiable Dynamic Programming for Structured Prediction and
  Attention
Differentiable Dynamic Programming for Structured Prediction and Attention
A. Mensch
Mathieu Blondel
58
131
0
11 Feb 2018
Sensitivity Analysis for Mirror-Stratifiable Convex Functions
Sensitivity Analysis for Mirror-Stratifiable Convex Functions
M. Fadili
J. Malick
Gabriel Peyré
42
26
0
11 Jul 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
207
416
0
06 Mar 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
150
958
0
01 Mar 2017
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
223
3,205
0
15 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
415
18,334
0
27 May 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
95
449
0
07 Feb 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
154
2,796
0
20 Feb 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
215
944
0
11 Feb 2015
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple
  parameter selection
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection
Charles-Alban Deledalle
Samuel Vaiter
M. Fadili
Gabriel Peyré
59
118
0
06 May 2014
The Degrees of Freedom of Partly Smooth Regularizers
The Degrees of Freedom of Partly Smooth Regularizers
Samuel Vaiter
Charles-Alban Deledalle
M. Fadili
Gabriel Peyré
C. Dossal
134
49
0
22 Apr 2014
Revisiting loss-specific training of filter-based MRFs for image
  restoration
Revisiting loss-specific training of filter-based MRFs for image restoration
Yunjin Chen
Thomas Pock
René Ranftl
Horst Bischof
58
64
0
16 Jan 2014
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
131
2,446
0
12 Dec 2010
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear
  Norm Minimization
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
Benjamin Recht
Maryam Fazel
P. Parrilo
380
3,764
0
28 Jun 2007
1