ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.01373
  4. Cited By
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction

DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction

2 August 2022
Yanke Li
Hatt Tobias
Ioana Bica
M. Schaar
    CML
ArXiv (abs)PDFHTML

Papers citing "DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction"

18 / 18 papers shown
Title
Unsuitability of NOTEARS for Causal Graph Discovery
Unsuitability of NOTEARS for Causal Graph Discovery
Marcus Kaiser
Maksim Sipos
CML
98
66
0
12 Apr 2021
Deep Visual Domain Adaptation
Deep Visual Domain Adaptation
G. Csurka
OOD
201
185
0
28 Dec 2020
Amortized Causal Discovery: Learning to Infer Causal Graphs from
  Time-Series Data
Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data
Sindy Löwe
David Madras
R. Zemel
Max Welling
CMLBDLAI4TS
102
131
0
18 Jun 2020
Implicit Class-Conditioned Domain Alignment for Unsupervised Domain
  Adaptation
Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation
Xiang Jiang
Qicheng Lao
Stan Matwin
Mohammad Havaei
73
112
0
09 Jun 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OODCoGeCML
114
44
0
18 Apr 2020
Improving Model Robustness Using Causal Knowledge
Improving Model Robustness Using Causal Knowledge
T. Kyono
M. Schaar
OOD
51
12
0
27 Nov 2019
Drop to Adapt: Learning Discriminative Features for Unsupervised Domain
  Adaptation
Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation
Seung-Min Lee
Dongwan Kim
Namil Kim
Seong-Gyun Jeong
TTAOOD
41
181
0
12 Oct 2019
Causal Induction from Visual Observations for Goal Directed Tasks
Causal Induction from Visual Observations for Goal Directed Tasks
Sunjay Cauligi
Yuke Zhu
D. Stefan
Tamara Rezk
CMLLRM
73
65
0
03 Oct 2019
Learning Neural Causal Models from Unknown Interventions
Learning Neural Causal Models from Unknown Interventions
Nan Rosemary Ke
O. Bilaniuk
Anirudh Goyal
Stefan Bauer
Hugo Larochelle
Bernhard Schölkopf
Michael C. Mozer
C. Pal
Yoshua Bengio
CMLOOD
107
169
0
02 Oct 2019
Learning Sparse Nonparametric DAGs
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric Xing
CML
165
260
0
29 Sep 2019
Gradient-Based Neural DAG Learning
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDLCML
64
275
0
05 Jun 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNNBDLCML
105
202
0
24 Apr 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDLCMLGNN
82
489
0
22 Apr 2019
Meta-Learning: A Survey
Meta-Learning: A Survey
Joaquin Vanschoren
FedMLOOD
70
762
0
08 Oct 2018
PAC-Bayesian Theory Meets Bayesian Inference
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
68
184
0
27 May 2016
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
220
4,288
0
04 Jun 2013
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
94
612
0
27 Jun 2012
MissForest - nonparametric missing value imputation for mixed-type data
MissForest - nonparametric missing value imputation for mixed-type data
D. Stekhoven
Peter Buhlmann
231
4,326
0
04 May 2011
1