ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.01066
  4. Cited By
What Can Transformers Learn In-Context? A Case Study of Simple Function
  Classes

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes

1 August 2022
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
ArXivPDFHTML

Papers citing "What Can Transformers Learn In-Context? A Case Study of Simple Function Classes"

11 / 111 papers shown
Title
Prompting PaLM for Translation: Assessing Strategies and Performance
Prompting PaLM for Translation: Assessing Strategies and Performance
David Vilar
Markus Freitag
Colin Cherry
Jiaming Luo
Viresh Ratnakar
George F. Foster
LRM
32
155
0
16 Nov 2022
Robustness of Demonstration-based Learning Under Limited Data Scenario
Robustness of Demonstration-based Learning Under Limited Data Scenario
Hongxin Zhang
Yanzhe Zhang
Ruiyi Zhang
Diyi Yang
47
13
0
19 Oct 2022
Revision Transformers: Instructing Language Models to Change their
  Values
Revision Transformers: Instructing Language Models to Change their Values
Felix Friedrich
Wolfgang Stammer
P. Schramowski
Kristian Kersting
KELM
33
6
0
19 Oct 2022
In-context Learning and Induction Heads
In-context Learning and Induction Heads
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
...
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
252
476
0
24 Sep 2022
Law Informs Code: A Legal Informatics Approach to Aligning Artificial
  Intelligence with Humans
Law Informs Code: A Legal Informatics Approach to Aligning Artificial Intelligence with Humans
John J. Nay
ELM
AILaw
88
27
0
14 Sep 2022
Recurrent Convolutional Neural Networks Learn Succinct Learning
  Algorithms
Recurrent Convolutional Neural Networks Learn Succinct Learning Algorithms
Surbhi Goel
Sham Kakade
Adam Tauman Kalai
Cyril Zhang
34
1
0
01 Sep 2022
Meta-learning via Language Model In-context Tuning
Meta-learning via Language Model In-context Tuning
Yanda Chen
Ruiqi Zhong
Sheng Zha
George Karypis
He He
236
158
0
15 Oct 2021
Fantastically Ordered Prompts and Where to Find Them: Overcoming
  Few-Shot Prompt Order Sensitivity
Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity
Yao Lu
Max Bartolo
Alastair Moore
Sebastian Riedel
Pontus Stenetorp
AILaw
LRM
281
1,124
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,315
0
17 Jan 2021
Meta Learning Backpropagation And Improving It
Meta Learning Backpropagation And Improving It
Louis Kirsch
Jürgen Schmidhuber
61
56
0
29 Dec 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
496
11,727
0
09 Mar 2017
Previous
123