ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.00281
28
26

Point Primitive Transformer for Long-Term 4D Point Cloud Video Understanding

30 July 2022
Hao-Kai Wen
Yunze Liu
Jingwei Huang
Bokun Duan
Li Yi
    ViT
    3DPC
ArXivPDFHTML
Abstract

This paper proposes a 4D backbone for long-term point cloud video understanding. A typical way to capture spatial-temporal context is using 4Dconv or transformer without hierarchy. However, those methods are neither effective nor efficient enough due to camera motion, scene changes, sampling patterns, and the complexity of 4D data. To address those issues, we leverage the primitive plane as a mid-level representation to capture the long-term spatial-temporal context in 4D point cloud videos and propose a novel hierarchical backbone named Point Primitive Transformer(PPTr), which is mainly composed of intra-primitive point transformers and primitive transformers. Extensive experiments show that PPTr outperforms the previous state of the arts on different tasks.

View on arXiv
Comments on this paper