Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.13948
Cited By
An Interpretability Evaluation Benchmark for Pre-trained Language Models
28 July 2022
Ya-Ming Shen
Lijie Wang
Ying Chen
Xinyan Xiao
Jing Liu
Hua-Hong Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Interpretability Evaluation Benchmark for Pre-trained Language Models"
10 / 10 papers shown
Title
Differentiating Choices via Commonality for Multiple-Choice Question Answering
Wenqing Deng
Zhe Wang
Kewen Wang
Shirui Pan
Xiaowang Zhang
Zhiyong Feng
33
0
0
21 Aug 2024
OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch
Juntao Li
Zecheng Tang
Yuyang Ding
Pinzheng Wang
Pei Guo
...
Wenliang Chen
Guohong Fu
Qiaoming Zhu
Guodong Zhou
M. Zhang
40
5
0
19 Sep 2023
Explainability for Large Language Models: A Survey
Haiyan Zhao
Hanjie Chen
Fan Yang
Ninghao Liu
Huiqi Deng
Hengyi Cai
Shuaiqiang Wang
Dawei Yin
Mengnan Du
LRM
23
408
0
02 Sep 2023
Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies
Mor Geva
Daniel Khashabi
Elad Segal
Tushar Khot
Dan Roth
Jonathan Berant
RALM
250
672
0
06 Jan 2021
The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives
Elena Voita
Rico Sennrich
Ivan Titov
193
181
0
03 Sep 2019
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
415
2,584
0
03 Sep 2019
e-SNLI: Natural Language Inference with Natural Language Explanations
Oana-Maria Camburu
Tim Rocktaschel
Thomas Lukasiewicz
Phil Blunsom
LRM
255
620
0
04 Dec 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,956
0
20 Apr 2018
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
227
201
0
06 Jul 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1