ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.13019
  4. Cited By
A Riemannian Stochastic Representation for Quantifying Model
  Uncertainties in Molecular Dynamics Simulations

A Riemannian Stochastic Representation for Quantifying Model Uncertainties in Molecular Dynamics Simulations

26 July 2022
Hao Zhang
J. Guilleminot
ArXiv (abs)PDFHTML

Papers citing "A Riemannian Stochastic Representation for Quantifying Model Uncertainties in Molecular Dynamics Simulations"

1 / 1 papers shown
Title
Learning Latent Space Dynamics with Model-Form Uncertainties: A
  Stochastic Reduced-Order Modeling Approach
Learning Latent Space Dynamics with Model-Form Uncertainties: A Stochastic Reduced-Order Modeling Approach
Jin Yi Yong
Rudy Geelen
Johann Guilleminot
95
1
0
30 Aug 2024
1