ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.11211
  4. Cited By
Improving Predictive Performance and Calibration by Weight Fusion in
  Semantic Segmentation

Improving Predictive Performance and Calibration by Weight Fusion in Semantic Segmentation

22 July 2022
Timo Sämann
A. Hammam
Andrei Bursuc
Christoph Stiller
H. Groß
    FedML
ArXivPDFHTML

Papers citing "Improving Predictive Performance and Calibration by Weight Fusion in Semantic Segmentation"

5 / 5 papers shown
Title
SWAD: Domain Generalization by Seeking Flat Minima
SWAD: Domain Generalization by Seeking Flat Minima
Junbum Cha
Sanghyuk Chun
Kyungjae Lee
Han-Cheol Cho
Seunghyun Park
Yunsung Lee
Sungrae Park
MoMe
216
423
0
17 Feb 2021
Deep High-Resolution Representation Learning for Visual Recognition
Deep High-Resolution Representation Learning for Visual Recognition
Jingdong Wang
Ke Sun
Tianheng Cheng
Borui Jiang
Chaorui Deng
...
Yadong Mu
Mingkui Tan
Xinggang Wang
Wenyu Liu
Bin Xiao
195
3,531
0
20 Aug 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
ENet: A Deep Neural Network Architecture for Real-Time Semantic
  Segmentation
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
233
2,056
0
07 Jun 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1