ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09085
  4. Cited By
Can You Fool AI by Doing a 180? $\unicode{x2013}$ A Case Study on
  Authorship Analysis of Texts by Arata Osada

Can You Fool AI by Doing a 180? \unicodex2013\unicode{x2013}\unicodex2013 A Case Study on Authorship Analysis of Texts by Arata Osada

19 July 2022
Jagna Nieuwazny
Karol Nowakowski
M. Ptaszynski
Fumito Masui
ArXivPDFHTML

Papers citing "Can You Fool AI by Doing a 180? $\unicode{x2013}$ A Case Study on Authorship Analysis of Texts by Arata Osada"

3 / 3 papers shown
Title
PART: Pre-trained Authorship Representation Transformer
PART: Pre-trained Authorship Representation Transformer
Javier Huertas-Tato
Álvaro Huertas-García
Alejandro Martín
85
8
0
30 Sep 2022
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
  Summarization
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
Jingqing Zhang
Yao-Min Zhao
Mohammad Saleh
Peter J. Liu
RALM
3DGS
197
2,029
0
18 Dec 2019
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
111
11,520
0
15 Feb 2018
1