ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09031
  4. Cited By
Decorrelative Network Architecture for Robust Electrocardiogram
  Classification

Decorrelative Network Architecture for Robust Electrocardiogram Classification

19 July 2022
Christopher Wiedeman
Ge Wang
    OOD
ArXivPDFHTML

Papers citing "Decorrelative Network Architecture for Robust Electrocardiogram Classification"

32 / 32 papers shown
Title
A Systematic Review of Robustness in Deep Learning for Computer Vision:
  Mind the gap?
A Systematic Review of Robustness in Deep Learning for Computer Vision: Mind the gap?
Nathan G. Drenkow
Numair Sani
I. Shpitser
Mathias Unberath
39
78
0
01 Dec 2021
Disrupting Adversarial Transferability in Deep Neural Networks
Disrupting Adversarial Transferability in Deep Neural Networks
Christopher Wiedeman
Ge Wang
AAML
86
7
0
27 Aug 2021
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
  Ensembles
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
Huanrui Yang
Jingyang Zhang
Hongliang Dong
Nathan Inkawhich
Andrew B. Gardner
Andrew Touchet
Wesley Wilkes
Heath Berry
H. Li
AAML
61
109
0
30 Sep 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
113
546
0
01 Jul 2020
Universal Adversarial Perturbations: A Survey
Universal Adversarial Perturbations: A Survey
Ashutosh Chaubey
Nikhil Agrawal
Kavya Barnwal
K. K. Guliani
Pramod Mehta
OOD
AAML
77
47
0
16 May 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
99
654
0
20 Feb 2020
The Case for Bayesian Deep Learning
The Case for Bayesian Deep Learning
A. Wilson
UQCV
BDL
OOD
112
112
0
29 Jan 2020
Opportunities and Challenges of Deep Learning Methods for
  Electrocardiogram Data: A Systematic Review
Opportunities and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic Review
linda Qiao
Yuxi Zhou
Junyuan Shang
Cao Xiao
Jimeng Sun
65
125
0
28 Dec 2019
Adversarial Robustness through Local Linearization
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
67
308
0
04 Jul 2019
A Fourier Perspective on Model Robustness in Computer Vision
A Fourier Perspective on Model Robustness in Computer Vision
Dong Yin
Raphael Gontijo-Lopes
Jonathon Shlens
E. D. Cubuk
Justin Gilmer
OOD
81
498
0
21 Jun 2019
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep
  Networks
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
Aryan Mobiny
H. Nguyen
S. Moulik
Naveen Garg
Carol C. Wu
UQCV
BDL
54
161
0
07 Jun 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,838
0
06 May 2019
Constructing Unrestricted Adversarial Examples with Generative Models
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
214
307
0
21 May 2018
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
150
604
0
15 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,186
0
01 Feb 2018
Generating Adversarial Examples with Adversarial Networks
Generating Adversarial Examples with Adversarial Networks
Chaowei Xiao
Yue Liu
Jun-Yan Zhu
Warren He
M. Liu
D. Song
GAN
AAML
115
899
0
08 Jan 2018
High Dimensional Spaces, Deep Learning and Adversarial Examples
High Dimensional Spaces, Deep Learning and Adversarial Examples
S. Dube
65
29
0
02 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A
  Survey
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
95
1,867
0
02 Jan 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,069
0
19 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial
  Manipulation
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
110
511
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
121
1,857
0
20 May 2017
The Space of Transferable Adversarial Examples
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
90
557
0
11 Apr 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,821
0
05 Dec 2016
Defensive Distillation is Not Robust to Adversarial Examples
Defensive Distillation is Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
56
338
0
14 Jul 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
112
1,739
0
24 May 2016
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,895
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
99
3,072
0
14 Nov 2015
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder
  Architectures for Scene Understanding
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
Alex Kendall
Vijay Badrinarayanan
R. Cipolla
UQCV
BDL
86
1,065
0
09 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
1