Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.09031
Cited By
Decorrelative Network Architecture for Robust Electrocardiogram Classification
19 July 2022
Christopher Wiedeman
Ge Wang
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Decorrelative Network Architecture for Robust Electrocardiogram Classification"
32 / 32 papers shown
Title
A Systematic Review of Robustness in Deep Learning for Computer Vision: Mind the gap?
Nathan G. Drenkow
Numair Sani
I. Shpitser
Mathias Unberath
39
78
0
01 Dec 2021
Disrupting Adversarial Transferability in Deep Neural Networks
Christopher Wiedeman
Ge Wang
AAML
86
7
0
27 Aug 2021
DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of Ensembles
Huanrui Yang
Jingyang Zhang
Hongliang Dong
Nathan Inkawhich
Andrew B. Gardner
Andrew Touchet
Wesley Wilkes
Heath Berry
H. Li
AAML
61
109
0
30 Sep 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
113
546
0
01 Jul 2020
Universal Adversarial Perturbations: A Survey
Ashutosh Chaubey
Nikhil Agrawal
Kavya Barnwal
K. K. Guliani
Pramod Mehta
OOD
AAML
77
47
0
16 May 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
99
654
0
20 Feb 2020
The Case for Bayesian Deep Learning
A. Wilson
UQCV
BDL
OOD
112
112
0
29 Jan 2020
Opportunities and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic Review
linda Qiao
Yuxi Zhou
Junyuan Shang
Cao Xiao
Jimeng Sun
65
125
0
28 Dec 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
67
308
0
04 Jul 2019
A Fourier Perspective on Model Robustness in Computer Vision
Dong Yin
Raphael Gontijo-Lopes
Jonathon Shlens
E. D. Cubuk
Justin Gilmer
OOD
81
498
0
21 Jun 2019
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
Aryan Mobiny
H. Nguyen
S. Moulik
Naveen Garg
Carol C. Wu
UQCV
BDL
54
161
0
07 Jun 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,838
0
06 May 2019
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
214
307
0
21 May 2018
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
150
604
0
15 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
219
3,186
0
01 Feb 2018
Generating Adversarial Examples with Adversarial Networks
Chaowei Xiao
Yue Liu
Jun-Yan Zhu
Warren He
M. Liu
D. Song
GAN
AAML
115
899
0
08 Jan 2018
High Dimensional Spaces, Deep Learning and Adversarial Examples
S. Dube
65
29
0
02 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
95
1,867
0
02 Jan 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
304
12,069
0
19 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
110
511
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
121
1,857
0
20 May 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
90
557
0
11 Apr 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,821
0
05 Dec 2016
Defensive Distillation is Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
56
338
0
14 Jul 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
112
1,739
0
24 May 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,895
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
99
3,072
0
14 Nov 2015
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
Alex Kendall
Vijay Badrinarayanan
R. Cipolla
UQCV
BDL
86
1,065
0
09 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
1