ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08822
  4. Cited By
Is Integer Arithmetic Enough for Deep Learning Training?

Is Integer Arithmetic Enough for Deep Learning Training?

18 July 2022
Alireza Ghaffari
Marzieh S. Tahaei
Mohammadreza Tayaranian
M. Asgharian
V. Nia
    MQ
ArXivPDFHTML

Papers citing "Is Integer Arithmetic Enough for Deep Learning Training?"

10 / 10 papers shown
Title
HOT: Hadamard-based Optimized Training
HOT: Hadamard-based Optimized Training
Seonggon Kim
Juncheol Shin
Seung-taek Woo
Eunhyeok Park
48
0
0
27 Mar 2025
Rethinking Post-Training Quantization: Introducing a Statistical Pre-Calibration Approach
Rethinking Post-Training Quantization: Introducing a Statistical Pre-Calibration Approach
Alireza Ghaffari
Sharareh Younesian
Boxing Chen
Vahid Partovi Nia
M. Asgharian
MQ
61
0
0
17 Jan 2025
Towards Accurate and Efficient Sub-8-Bit Integer Training
Wenjin Guo
Donglai Liu
Weiying Xie
Yunsong Li
Xuefei Ning
Zihan Meng
Shulin Zeng
Jie Lei
Zhenman Fang
Yu Wang
MQ
34
1
0
17 Nov 2024
AdpQ: A Zero-shot Calibration Free Adaptive Post Training Quantization
  Method for LLMs
AdpQ: A Zero-shot Calibration Free Adaptive Post Training Quantization Method for LLMs
Alireza Ghaffari
Sharareh Younesian
Vahid Partovi Nia
Boxing Chen
M. Asgharian
MQ
52
0
0
22 May 2024
Understanding Neural Network Binarization with Forward and Backward
  Proximal Quantizers
Understanding Neural Network Binarization with Forward and Backward Proximal Quantizers
Yiwei Lu
Yaoliang Yu
Xinlin Li
Vahid Partovi Nia
MQ
38
3
0
27 Feb 2024
Mitigating Outlier Activations in Low-Precision Fine-Tuning of Language
  Models
Mitigating Outlier Activations in Low-Precision Fine-Tuning of Language Models
Alireza Ghaffari
Justin Yu
Mahsa Ghazvini Nejad
M. Asgharian
Boxing Chen
Vahid Partovi Nia
18
2
0
14 Dec 2023
Mathematical Challenges in Deep Learning
Mathematical Challenges in Deep Learning
V. Nia
Guojun Zhang
I. Kobyzev
Michael R. Metel
Xinlin Li
...
S. Hemati
M. Asgharian
Linglong Kong
Wulong Liu
Boxing Chen
AI4CE
VLM
37
1
0
24 Mar 2023
Virtualization of Tiny Embedded Systems with a robust real-time capable
  and extensible Stack Virtual Machine REXAVM supporting Material-integrated
  Intelligent Systems and Tiny Machine Learning
Virtualization of Tiny Embedded Systems with a robust real-time capable and extensible Stack Virtual Machine REXAVM supporting Material-integrated Intelligent Systems and Tiny Machine Learning
S. Bosse
Sarah Bornemann
B. Lüssem
16
3
0
17 Feb 2023
On the Convergence of Stochastic Gradient Descent in Low-precision
  Number Formats
On the Convergence of Stochastic Gradient Descent in Low-precision Number Formats
M. Cacciola
A. Frangioni
M. Asgharian
Alireza Ghaffari
V. Nia
45
4
0
04 Jan 2023
Towards Fine-tuning Pre-trained Language Models with Integer Forward and
  Backward Propagation
Towards Fine-tuning Pre-trained Language Models with Integer Forward and Backward Propagation
Mohammadreza Tayaranian
Alireza Ghaffari
Marzieh S. Tahaei
Mehdi Rezagholizadeh
M. Asgharian
V. Nia
MQ
36
6
0
20 Sep 2022
1