ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08540
  4. Cited By
Multi-block-Single-probe Variance Reduced Estimator for Coupled
  Compositional Optimization

Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization

18 July 2022
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
ArXivPDFHTML

Papers citing "Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization"

16 / 16 papers shown
Title
Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Ming Yang
Gang Li
Quanqi Hu
Qihang Lin
Tianbao Yang
31
0
0
21 Apr 2025
Communication-Efficient Federated Group Distributionally Robust
  Optimization
Communication-Efficient Federated Group Distributionally Robust Optimization
Zhishuai Guo
Tianbao Yang
FedML
33
0
0
08 Oct 2024
Projection-Free Variance Reduction Methods for Stochastic Constrained
  Multi-Level Compositional Optimization
Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization
Wei Jiang
Sifan Yang
Wenhao Yang
Yibo Wang
Yuanyu Wan
Lijun Zhang
28
2
0
06 Jun 2024
Adaptive Variance Reduction for Stochastic Optimization under Weaker
  Assumptions
Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions
Wei Jiang
Sifan Yang
Yibo Wang
Lijun Zhang
30
2
0
04 Jun 2024
Efficient Sign-Based Optimization: Accelerating Convergence via Variance
  Reduction
Efficient Sign-Based Optimization: Accelerating Convergence via Variance Reduction
Wei Jiang
Sifan Yang
Wenhao Yang
Lijun Zhang
21
3
0
01 Jun 2024
Efficient Algorithms for Empirical Group Distributional Robust
  Optimization and Beyond
Efficient Algorithms for Empirical Group Distributional Robust Optimization and Beyond
Dingzhi Yu
Yu-yan Cai
Wei Jiang
Lijun Zhang
41
5
0
06 Mar 2024
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
Quanqi Hu
Dixian Zhu
Tianbao Yang
35
8
0
05 Oct 2023
Serverless Federated AUPRC Optimization for Multi-Party Collaborative
  Imbalanced Data Mining
Serverless Federated AUPRC Optimization for Multi-Party Collaborative Imbalanced Data Mining
Xidong Wu
Zhengmian Hu
Jian Pei
Heng Huang
27
12
0
06 Aug 2023
Learning Unnormalized Statistical Models via Compositional Optimization
Learning Unnormalized Statistical Models via Compositional Optimization
Wei Jiang
Jiayu Qin
Lingyu Wu
Changyou Chen
Tianbao Yang
Lijun Zhang
28
3
0
13 Jun 2023
LibAUC: A Deep Learning Library for X-Risk Optimization
LibAUC: A Deep Learning Library for X-Risk Optimization
Zhuoning Yuan
Dixian Zhu
Zimeng Qiu
Gang Li
Xuanhui Wang
Tianbao Yang
BDL
43
16
0
05 Jun 2023
Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for
  Multi-Block Bilevel Optimization
Blockwise Stochastic Variance-Reduced Methods with Parallel Speedup for Multi-Block Bilevel Optimization
Quanqi Hu
Zimeng Qiu
Zhishuai Guo
Lijun Zhang
Tianbao Yang
19
5
0
30 May 2023
Debiasing Conditional Stochastic Optimization
Debiasing Conditional Stochastic Optimization
Lie He
S. Kasiviswanathan
CML
BDL
44
4
0
20 Apr 2023
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
47
8
0
26 Oct 2022
Algorithmic Foundations of Empirical X-risk Minimization
Algorithmic Foundations of Empirical X-risk Minimization
Tianbao Yang
35
5
0
01 Jun 2022
Solving Stochastic Compositional Optimization is Nearly as Easy as
  Solving Stochastic Optimization
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
48
81
0
25 Aug 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
1