Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.08483
Cited By
wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws
18 July 2022
Tim De Ryck
Siddhartha Mishra
Roberto Molinaro
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"wPINNs: Weak Physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws"
8 / 8 papers shown
Title
A Deep Learning Framework for Solving Hyperbolic Partial Differential Equations: Part I
Rajat Arora
PINN
AI4CE
27
1
0
09 Jul 2023
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
56
24
0
03 Oct 2022
Variationally Mimetic Operator Networks
Dhruv V. Patel
Deep Ray
M. Abdelmalik
T. Hughes
Assad A. Oberai
55
23
0
26 Sep 2022
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
15
10
0
15 Jul 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
61
59
0
23 May 2022
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
238
2,298
0
18 Oct 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
760
0
13 Mar 2020
1