Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.07753
Cited By
Do Not Sleep on Traditional Machine Learning: Simple and Interpretable Techniques Are Competitive to Deep Learning for Sleep Scoring
15 July 2022
Jeroen Van Der Donckt
Jonas Van Der Donckt
Emiel Deprost
N. Vandenbussche
Michael Rademaker
Gilles Vandewiele
Sofie Van Hoecke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Do Not Sleep on Traditional Machine Learning: Simple and Interpretable Techniques Are Competitive to Deep Learning for Sleep Scoring"
3 / 3 papers shown
Title
ProductGraphSleepNet: Sleep Staging using Product Spatio-Temporal Graph Learning with Attentive Temporal Aggregation
A. Einizade
S. Nasiri
S. H. Sardouie
G. Clifford
21
14
0
09 Dec 2022
Interpretable (not just posthoc-explainable) medical claims modeling for discharge placement to prevent avoidable all-cause readmissions or death
Joshua C. Chang
Ted L. Chang
Carson C. Chow
R. Mahajan
Sonya Mahajan
Joe Maisog
Shashaank Vattikuti
Hongjing Xia
FAtt
OOD
32
0
0
28 Aug 2022
RobustSleepNet: Transfer learning for automated sleep staging at scale
Antoine Guillot
Valentin Thorey
OOD
40
83
0
07 Jan 2021
1