Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.07038
Cited By
SHAP-XRT: The Shapley Value Meets Conditional Independence Testing
14 July 2022
Jacopo Teneggi
Beepul Bharti
Yaniv Romano
Jeremias Sulam
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SHAP-XRT: The Shapley Value Meets Conditional Independence Testing"
18 / 18 papers shown
Title
Feature Importance: A Closer Look at Shapley Values and LOCO
I. Verdinelli
Larry A. Wasserman
FAtt
TDI
76
22
0
10 Mar 2023
Weakly Supervised Learning Significantly Reduces the Number of Labels Required for Intracranial Hemorrhage Detection on Head CT
Jacopo Teneggi
Paul H. Yi
Jeremias Sulam
47
4
0
29 Nov 2022
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
79
210
0
11 Feb 2022
A Rate-Distortion Framework for Explaining Black-box Model Decisions
Stefan Kolek
Duc Anh Nguyen
Ron Levie
Joan Bruna
Gitta Kutyniok
67
16
0
12 Oct 2021
Cartoon Explanations of Image Classifiers
Stefan Kolek
Duc Anh Nguyen
Ron Levie
Joan Bruna
Gitta Kutyniok
FAtt
76
17
0
07 Oct 2021
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
91
131
0
15 Jul 2021
Explainable AI for Interpretable Credit Scoring
Lara Marie Demajo
Vince Vella
A. Dingli
59
38
0
03 Dec 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
85
248
0
21 Nov 2020
True to the Model or True to the Data?
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDI
FAtt
140
166
0
29 Jun 2020
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAtt
TDI
33
99
0
01 Jun 2020
A Distributional Framework for Data Valuation
Amirata Ghorbani
Michael P. Kim
James Zou
TDI
47
131
0
27 Feb 2020
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
57
280
0
29 Oct 2019
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
113
166
0
20 Jun 2018
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,518
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
188
3,869
0
10 Apr 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.1K
16,931
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
241
9,305
0
14 Dec 2015
Combining p-values via averaging
V. Vovk
Ruodu Wang
FedML
205
207
0
20 Dec 2012
1