Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.06503
Cited By
Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations
13 July 2022
Yifan Chen
Ethan N. Epperly
J. Tropp
R. Webber
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations"
30 / 30 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
146
0
0
02 Mar 2025
Joint Estimation of Conditional Mean and Covariance for Unbalanced Panels
Damir Filipović
P. Schneider
45
0
0
29 Oct 2024
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
132
0
0
17 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
52
5
0
04 Oct 2024
The fast committor machine: Interpretable prediction with kernels
D. Aristoff
Mats S. Johnson
Gideon Simpson
Robert J. Webber
50
5
0
16 May 2024
Randomly Pivoted Partial Cholesky: Random How?
Stefan Steinerberger
19
1
0
17 Apr 2024
Kernel Methods are Competitive for Operator Learning
Pau Batlle
Matthieu Darcy
Bamdad Hosseini
H. Owhadi
58
40
0
26 Apr 2023
Robust, randomized preconditioning for kernel ridge regression
Mateo Díaz
Ethan N. Epperly
Zachary Frangella
J. Tropp
R. Webber
59
12
0
24 Apr 2023
Toward Large Kernel Models
Amirhesam Abedsoltan
M. Belkin
Parthe Pandit
77
17
0
06 Feb 2023
Mechanism of feature learning in deep fully connected networks and kernel machines that recursively learn features
Adityanarayanan Radhakrishnan
Daniel Beaglehole
Parthe Pandit
M. Belkin
FAtt
MLT
53
13
0
28 Dec 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
77
36
0
17 Mar 2022
Simple, Fast, and Flexible Framework for Matrix Completion with Infinite Width Neural Networks
Adityanarayanan Radhakrishnan
George Stefanakis
M. Belkin
Caroline Uhler
59
26
0
31 Jul 2021
Kernel approximation on algebraic varieties
Jason M. Altschuler
P. Parrilo
32
5
0
04 Jun 2021
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
69
214
0
31 Jul 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
68
116
0
18 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
54
80
0
07 May 2020
Diversity sampling is an implicit regularization for kernel methods
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
53
14
0
20 Feb 2020
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
58
162
0
03 Oct 2019
Exact sampling of determinantal point processes with sublinear time preprocessing
Michal Derezinski
Daniele Calandriello
Michal Valko
51
55
0
31 May 2019
On Fast Leverage Score Sampling and Optimal Learning
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
46
82
0
31 Oct 2018
Distributed Adaptive Sampling for Kernel Matrix Approximation
Daniele Calandriello
A. Lazaric
Michal Valko
112
24
0
27 Mar 2018
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
148
360
0
30 Oct 2017
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
J. Tropp
A. Yurtsever
Madeleine Udell
Volkan Cevher
48
81
0
18 Jun 2017
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
75
196
0
31 May 2017
Sublinear Time Low-Rank Approximation of Positive Semidefinite Matrices
Cameron Musco
David P. Woodruff
46
58
0
11 Apr 2017
Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes
Nima Anari
S. Gharan
A. Rezaei
47
130
0
16 Feb 2016
An Introduction to Matrix Concentration Inequalities
J. Tropp
153
1,149
0
07 Jan 2015
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
160
1,322
0
29 Jul 2014
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
239
1,138
0
25 Jul 2012
A Tutorial on Spectral Clustering
U. V. Luxburg
277
10,532
0
01 Nov 2007
1