Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.06343
Cited By
TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels
13 July 2022
Yaodong Yu
Alexander Wei
Sai Praneeth Karimireddy
Yi-An Ma
Michael I. Jordan
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels"
32 / 32 papers shown
Title
On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data
Jianyu Wang
Rudrajit Das
Gauri Joshi
Satyen Kale
Zheng Xu
Tong Zhang
FedML
72
39
0
09 Jun 2022
Fed2: Feature-Aligned Federated Learning
Fuxun Yu
Weishan Zhang
Zhuwei Qin
Zirui Xu
Di Wang
Chenchen Liu
Zhi Tian
Xiang Chen
FedML
58
76
0
28 Nov 2021
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
73
57
0
29 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
267
418
0
14 Jul 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
58
112
0
15 Jun 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
73
101
0
09 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Yue Liu
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
144
980
0
03 Feb 2021
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
97
190
0
28 Oct 2020
Training Production Language Models without Memorizing User Data
Swaroop Indra Ramaswamy
Om Thakkar
Rajiv Mathews
Galen Andrew
H. B. McMahan
Franccoise Beaufays
FedML
62
92
0
21 Sep 2020
Predicting Training Time Without Training
Luca Zancato
Alessandro Achille
Avinash Ravichandran
Rahul Bhotika
Stefano Soatto
108
24
0
28 Aug 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
116
218
0
08 Aug 2020
Byzantine-Resilient Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
52
243
0
21 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
55
1,332
0
15 Jul 2020
Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
Hongyi Wang
Kartik K. Sreenivasan
Shashank Rajput
Harit Vishwakarma
Saurabh Agarwal
Jy-yong Sohn
Kangwook Lee
Dimitris Papailiopoulos
FedML
76
604
0
09 Jul 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
71
277
0
02 Jul 2020
Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks
Like Hui
M. Belkin
UQCV
AAML
VLM
46
171
0
12 Jun 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
296
556
0
30 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
262
438
0
04 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
174
1,434
0
29 Feb 2020
Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge based Framework
Qiong Wu
Kaiwen He
Xu Chen
64
284
0
25 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
223
6,247
0
10 Dec 2019
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
Minghong Fang
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
OOD
FedML
101
1,108
0
26 Nov 2019
Can You Really Backdoor Federated Learning?
Ziteng Sun
Peter Kairouz
A. Suresh
H. B. McMahan
FedML
67
572
0
18 Nov 2019
Model Fusion via Optimal Transport
Sidak Pal Singh
Martin Jaggi
MoMe
FedML
98
233
0
12 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
137
568
0
01 Oct 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
138
1,147
0
13 Sep 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,663
0
04 Feb 2019
Agnostic Federated Learning
M. Mohri
Gary Sivek
A. Suresh
FedML
124
933
0
01 Feb 2019
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
242
1,706
0
14 Apr 2018
Group Normalization
Yuxin Wu
Kaiming He
221
3,652
0
22 Mar 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
268
8,876
0
25 Aug 2017
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
1