ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.04873
  4. Cited By
Hierarchical Average Precision Training for Pertinent Image Retrieval
v1v2 (latest)

Hierarchical Average Precision Training for Pertinent Image Retrieval

5 July 2022
Elias Ramzi
Nicolas Audebert
Nicolas Thome
Clément Rambour
Xavier Bitot
ArXiv (abs)PDFHTMLGithub (22★)

Papers citing "Hierarchical Average Precision Training for Pertinent Image Retrieval"

21 / 21 papers shown
Title
Robust and Decomposable Average Precision for Image Retrieval
Robust and Decomposable Average Precision for Image Retrieval
Elias Ramzi
Nicolas Thome
Clément Rambour
Nicolas Audebert
Xavier Bitot
91
27
0
01 Oct 2021
Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate
  Multiple Semantic Scales
Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales
Yifan Sun
Yuke Zhu
Yuhan Zhang
Pengkun Zheng
Xi Qiu
Chi Zhang
Yichen Wei
60
17
0
22 Mar 2021
PyTorch Metric Learning
PyTorch Metric Learning
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
38
106
0
20 Aug 2020
Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval
Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval
A. Brown
Weidi Xie
Vicky Kalogeiton
Andrew Zisserman
97
164
0
23 Jul 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
14,986
0
18 Jun 2020
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component
  Analysis
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis
Eu Wern Teh
Terrance Devries
Graham W. Taylor
63
158
0
02 Apr 2020
Hierarchical Image Classification using Entailment Cone Embeddings
Hierarchical Image Classification using Entailment Cone Embeddings
Ankit Dhall
Anastasia Makarova
O. Ganea
Dario Pavllo
Michael Greeff
Andreas Krause
37
61
0
02 Apr 2020
Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
Making Better Mistakes: Leveraging Class Hierarchies with Deep Networks
Luca Bertinetto
Romain Mueller
Konstantinos Tertikas
Sina Samangooei
Nicholas A. Lord
OOD
180
137
0
19 Dec 2019
Cross-Batch Memory for Embedding Learning
Cross-Batch Memory for Embedding Learning
Xun Wang
H. Zhang
Weilin Huang
Matthew R. Scott
129
247
0
14 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,559
0
03 Dec 2019
Learning with Average Precision: Training Image Retrieval with a
  Listwise Loss
Learning with Average Precision: Training Image Retrieval with a Listwise Loss
Jérôme Revaud
Jon Almazán
Rafael Sampaio de Rezende
César Roberto de Souza
VLM
62
373
0
18 Jun 2019
Multi-Similarity Loss with General Pair Weighting for Deep Metric
  Learning
Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
Xun Wang
Xintong Han
Weilin Huang
Dengke Dong
Matthew R. Scott
80
754
0
14 Apr 2019
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Filip Radenovic
Ahmet Iscen
Giorgos Tolias
Yannis Avrithis
Ondřej Chum
52
379
0
29 Mar 2018
CosFace: Large Margin Cosine Loss for Deep Face Recognition
CosFace: Large Margin Cosine Loss for Deep Face Recognition
Haobo Wang
Yitong Wang
Zheng Zhou
Xing Ji
Dihong Gong
Jin Zhou
Zhifeng Li
Wei Liu
CVBMMQ
133
2,508
0
29 Jan 2018
Mixed Precision Training
Mixed Precision Training
Paulius Micikevicius
Sharan Narang
Jonah Alben
G. Diamos
Erich Elsen
...
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
Hao Wu
166
1,804
0
10 Oct 2017
Sampling Matters in Deep Embedding Learning
Sampling Matters in Deep Embedding Learning
Chaoxia Wu
R. Manmatha
Alex Smola
Philipp Krahenbuhl
102
923
0
23 Jun 2017
No Fuss Distance Metric Learning using Proxies
No Fuss Distance Metric Learning using Proxies
Yair Movshovitz-Attias
Alexander Toshev
Thomas Leung
Sergey Ioffe
Saurabh Singh
89
641
0
21 Mar 2017
CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard
  Examples
CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples
Filip Radenovic
Giorgos Tolias
Ondřej Chum
SSL
93
599
0
08 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding
Hyun Oh Song
Yu Xiang
Stefanie Jegelka
Silvio Savarese
FedMLSSLDML
94
1,643
0
19 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
1