ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.04604
  4. Cited By
Privacy-preserving Decentralized Deep Learning with Multiparty
  Homomorphic Encryption

Privacy-preserving Decentralized Deep Learning with Multiparty Homomorphic Encryption

11 July 2022
Guowen Xu
Guanlin Li
Shangwei Guo
Tianwei Zhang
Hongwei Li
    FedML
ArXiv (abs)PDFHTML

Papers citing "Privacy-preserving Decentralized Deep Learning with Multiparty Homomorphic Encryption"

17 / 17 papers shown
Title
GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural
  Networks
GALA: Greedy ComputAtion for Linear Algebra in Privacy-Preserved Neural Networks
Qiao Zhang
Chunsheng Xin
Hongyi Wu
62
49
0
05 May 2021
CrypTFlow2: Practical 2-Party Secure Inference
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
132
316
0
13 Oct 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
POSEIDON: Privacy-Preserving Federated Neural Network Learning
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
35
156
0
01 Sep 2020
PowerGossip: Practical Low-Rank Communication Compression in
  Decentralized Deep Learning
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
FedML
58
54
0
04 Aug 2020
Auditing Differentially Private Machine Learning: How Private is Private
  SGD?
Auditing Differentially Private Machine Learning: How Private is Private SGD?
Matthew Jagielski
Jonathan R. Ullman
Alina Oprea
FedML
78
250
0
13 Jun 2020
Scalable Privacy-Preserving Distributed Learning
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
82
70
0
19 May 2020
BLAZE: Blazing Fast Privacy-Preserving Machine Learning
BLAZE: Blazing Fast Privacy-Preserving Machine Learning
A. Patra
Ajith Suresh
65
200
0
18 May 2020
CrypTFlow: Secure TensorFlow Inference
CrypTFlow: Secure TensorFlow Inference
Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
147
244
0
16 Sep 2019
Differentially Private Meta-Learning
Differentially Private Meta-Learning
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
124
108
0
12 Sep 2019
Decentralized Deep Learning with Arbitrary Communication Compression
Decentralized Deep Learning with Arbitrary Communication Compression
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
74
235
0
22 Jul 2019
Helen: Maliciously Secure Coopetitive Learning for Linear Models
Helen: Maliciously Secure Coopetitive Learning for Linear Models
Wenting Zheng
Raluca A. Popa
Joseph E. Gonzalez
Ion Stoica
FedML
79
144
0
16 Jul 2019
Differentially Private Model Publishing for Deep Learning
Differentially Private Model Publishing for Deep Learning
Lei Yu
Ling Liu
C. Pu
Mehmet Emre Gursoy
Stacey Truex
FedML
105
268
0
03 Apr 2019
XONN: XNOR-based Oblivious Deep Neural Network Inference
XONN: XNOR-based Oblivious Deep Neural Network Inference
M. Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin E. Lauter
F. Koushanfar
FedMLGNNBDL
74
282
0
19 Feb 2019
Graphical-model based estimation and inference for differential privacy
Graphical-model based estimation and inference for differential privacy
Ryan McKenna
Daniel Sheldon
G. Miklau
67
144
0
26 Jan 2019
Gazelle: A Low Latency Framework for Secure Neural Network Inference
Gazelle: A Low Latency Framework for Secure Neural Network Inference
Chiraag Juvekar
Vinod Vaikuntanathan
A. Chandrakasan
79
894
0
16 Jan 2018
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case
  Study for Decentralized Parallel Stochastic Gradient Descent
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
68
1,235
0
25 May 2017
Deep Models Under the GAN: Information Leakage from Collaborative Deep
  Learning
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
139
1,413
0
24 Feb 2017
1