Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.04380
Cited By
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
10 July 2022
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions"
30 / 30 papers shown
Title
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
64
0
0
16 Mar 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
85
0
0
02 Dec 2024
Scalable DP-SGD: Shuffling vs. Poisson Subsampling
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
36
5
0
06 Nov 2024
A Hassle-free Algorithm for Private Learning in Practice: Don't Use Tree Aggregation, Use BLTs
H. B. McMahan
Zheng Xu
Yanxiang Zhang
FedML
42
6
0
16 Aug 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
39
11
0
10 Jul 2024
Attack-Aware Noise Calibration for Differential Privacy
B. Kulynych
Juan Felipe Gomez
G. Kaissis
Flavio du Pin Calmon
Carmela Troncoso
57
6
0
02 Jul 2024
Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
Lynn Chua
Badih Ghazi
Yangsibo Huang
Pritish Kamath
Ravi Kumar
Daogao Liu
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
32
11
0
20 Jun 2024
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
47
4
0
13 Jun 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
53
9
0
27 May 2024
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
Tudor Cebere
A. Bellet
Nicolas Papernot
30
9
0
23 May 2024
pfl-research: simulation framework for accelerating research in Private Federated Learning
Filip Granqvist
Congzheng Song
Áine Cahill
Rogier van Dalen
Martin Pelikan
Yi Sheng Chan
Xiaojun Feng
Natarajan Krishnaswami
Vojta Jina
Mona Chitnis
FedML
39
6
0
09 Apr 2024
How Private are DP-SGD Implementations?
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
43
12
0
26 Mar 2024
Closed-Form Bounds for DP-SGD against Record-level Inference
Giovanni Cherubin
Boris Köpf
Andrew J. Paverd
Shruti Tople
Lukas Wutschitz
Santiago Zanella Béguelin
46
2
0
22 Feb 2024
Privacy Profiles for Private Selection
Antti Koskela
Rachel Redberg
Yu-Xiang Wang
34
1
0
09 Feb 2024
Subsampling is not Magic: Why Large Batch Sizes Work for Differentially Private Stochastic Optimisation
Ossi Raisa
Joonas Jälkö
Antti Honkela
30
6
0
06 Feb 2024
Tight Group-Level DP Guarantees for DP-SGD with Sampling via Mixture of Gaussians Mechanisms
Arun Ganesh
26
2
0
17 Jan 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
47
18
0
09 Jan 2024
Sparsity-Preserving Differentially Private Training of Large Embedding Models
Badih Ghazi
Yangsibo Huang
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
29
2
0
14 Nov 2023
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
27
13
0
21 Aug 2023
The importance of feature preprocessing for differentially private linear optimization
Ziteng Sun
A. Suresh
A. Menon
30
3
0
19 Jul 2023
DP-Auditorium: a Large Scale Library for Auditing Differential Privacy
William Kong
Andrés Munoz Medina
Mónica Ribero
Umar Syed
29
2
0
10 Jul 2023
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
41
11
0
08 Jul 2023
DPAF: Image Synthesis via Differentially Private Aggregation in Forward Phase
Chih-Hsun Lin
Chia-Yi Hsu
Chia-Mu Yu
Yang Cao
Chun-ying Huang
36
1
0
20 Apr 2023
A Randomized Approach for Tight Privacy Accounting
Jiachen T. Wang
Saeed Mahloujifar
Tong Wu
R. Jia
Prateek Mittal
36
9
0
17 Apr 2023
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
32
14
0
21 Nov 2022
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
30
29
0
20 Nov 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
25
7
0
20 Aug 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
65
14
0
10 Jul 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
19
36
0
10 Jun 2022
Individual Privacy Accounting via a Renyi Filter
Vitaly Feldman
Tijana Zrnic
59
86
0
25 Aug 2020
1