Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.03933
Cited By
A law of adversarial risk, interpolation, and label noise
8 July 2022
Daniel Paleka
Amartya Sanyal
NoLa
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A law of adversarial risk, interpolation, and label noise"
37 / 37 papers shown
Title
How unfair is private learning ?
Amartya Sanyal
Yaxian Hu
Fanny Yang
FaML
FedML
68
24
0
08 Jun 2022
Indiscriminate Data Poisoning Attacks on Neural Networks
Yiwei Lu
Gautam Kamath
Yaoliang Yu
AAML
81
25
0
19 Apr 2022
Can Neural Nets Learn the Same Model Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Perspective
Gowthami Somepalli
Liam H. Fowl
Arpit Bansal
Ping Yeh-Chiang
Yehuda Dar
Richard Baraniuk
Micah Goldblum
Tom Goldstein
46
67
0
15 Mar 2022
Fast Rates for Noisy Interpolation Require Rethinking the Effects of Inductive Bias
Konstantin Donhauser
Nicolò Ruggeri
Stefan Stojanovic
Fanny Yang
28
21
0
07 Mar 2022
Learning with Noisy Labels Revisited: A Study Using Real-World Human Annotations
Jiaheng Wei
Zhaowei Zhu
Weiran Wang
Tongliang Liu
Gang Niu
Yang Liu
NoLa
91
251
0
22 Oct 2021
The Dimpled Manifold Model of Adversarial Examples in Machine Learning
A. Shamir
Odelia Melamed
Oriel BenShmuel
AAML
33
50
0
18 Jun 2021
Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes
Elvis Dohmatob
54
9
0
04 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
36
216
0
26 May 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan Kankanhalli
Masashi Sugiyama
AAML
50
27
0
06 Feb 2021
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
41
19
0
24 Jan 2021
A law of robustness for two-layers neural networks
Sébastien Bubeck
Yuanzhi Li
Dheeraj M. Nagaraj
55
57
0
30 Sep 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
118
459
0
09 Aug 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
40
58
0
08 Jul 2020
Neural Anisotropy Directions
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
76
16
0
17 Jun 2020
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
56
359
0
13 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
75
151
0
16 May 2020
Neural networks are a priori biased towards Boolean functions with low entropy
Chris Mingard
Joar Skalse
Guillermo Valle Pérez
David Martínez-Rubio
Vladimir Mikulik
A. Louis
FAtt
AI4CE
64
39
0
25 Sep 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
64
776
0
26 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
119
493
0
12 Jun 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
128
247
0
28 May 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
153
743
0
19 Mar 2019
On the Geometry of Adversarial Examples
Marc Khoury
Dylan Hadfield-Menell
AAML
46
79
0
01 Nov 2018
Robustness via Deep Low-Rank Representations
Amartya Sanyal
Varun Kanade
Philip Torr
P. Dokania
OOD
98
17
0
19 Apr 2018
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning
Matthew Jagielski
Alina Oprea
Battista Biggio
Chang-rui Liu
Cristina Nita-Rotaru
Yue Liu
AAML
85
757
0
01 Apr 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
84
639
0
14 Feb 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
92
1,407
0
08 Dec 2017
Multiscale sequence modeling with a learned dictionary
B. V. Merrienboer
Amartya Sanyal
Hugo Larochelle
Yoshua Bengio
53
10
0
03 Jul 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
547
130,873
0
12 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,720
0
19 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
133
806
0
28 Apr 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
302
4,623
0
10 Nov 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
128
3,440
0
07 Oct 2016
A General Characterization of the Statistical Query Complexity
Vitaly Feldman
42
53
0
07 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,885
0
08 Jul 2016
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
56
3,066
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
217
19,011
0
20 Dec 2014
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
221
8,389
0
28 Nov 2014
1