Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.03859
Cited By
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
8 July 2022
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study"
13 / 13 papers shown
Title
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
47
24
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
42
39
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
83
127
0
14 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
61
383
0
29 Apr 2021
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
84
140
0
12 Feb 2021
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
48
76
0
14 Oct 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
71
620
0
14 Jul 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
64
315
0
15 Feb 2020
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
101
207
0
23 May 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
87
269
0
13 Jun 2018
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
79
906
0
17 Feb 2014
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
139
4,275
0
18 Nov 2011
1