ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03485
  4. Cited By
On Non-Linear operators for Geometric Deep Learning
v1v2 (latest)

On Non-Linear operators for Geometric Deep Learning

6 July 2022
G. Sergeant-Perthuis
Jakob Maier
Joan Bruna
Edouard Oyallon
ArXiv (abs)PDFHTML

Papers citing "On Non-Linear operators for Geometric Deep Learning"

14 / 14 papers shown
Title
Coordinate Independent Convolutional Networks -- Isometry and Gauge
  Equivariant Convolutions on Riemannian Manifolds
Coordinate Independent Convolutional Networks -- Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds
Maurice Weiler
Patrick Forré
E. Verlinde
Max Welling
57
84
0
10 Jun 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
355
1,153
0
27 Apr 2021
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
96
90
0
25 Feb 2021
Universal Approximation Theorem for Equivariant Maps by Group CNNs
Universal Approximation Theorem for Equivariant Maps by Group CNNs
Wataru Kumagai
Akiyoshi Sannai
83
14
0
27 Dec 2020
Machine Learning for Fluid Mechanics
Machine Learning for Fluid Mechanics
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CEPINN
87
2,122
0
27 May 2019
Universal Invariant and Equivariant Graph Neural Networks
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
189
292
0
13 May 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
108
412
0
11 Feb 2019
Universal approximations of invariant maps by neural networks
Universal approximations of invariant maps by neural networks
Dmitry Yarotsky
124
214
0
26 Apr 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
112
500
0
11 Feb 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
810
3,287
0
24 Nov 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
169
1,941
0
24 Feb 2016
Understanding Deep Convolutional Networks
Understanding Deep Convolutional Networks
S. Mallat
FAttAI4CE
175
639
0
19 Jan 2016
Invariant Scattering Convolution Networks
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
122
1,278
0
05 Mar 2012
Group Invariant Scattering
Group Invariant Scattering
S. Mallat
123
991
0
12 Jan 2011
1